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Abstract

We compute by computer simulations the solvation force of a system of linear and branched alkanes confined in a slab geometry. The
solvation force for linear decane oscillates with distance with a periodicity close to the width of the molecules. The branched alkanes, 2-
methylundecane and 2-methylheptane, show a similar oscillatory behaviour, however the oscillations are decreased with a factor of about
three and show a long-range attractive force. In addition, we show that the critical temperature of the liquid-vapour coexistence of n-
pentane shifts to lower temperatures upon confining. 1998 Elsevier Science S.A. All rights reserved
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1. Introduction

The stability of colloidal suspensions are well-described
by mean-field theories like the Van der Waals theory or the
Derjaguin Landau Verweij Overbeek theory in the case of
charged-stabilised colloids [1,2]. However, when two big
colloidal particles or surfaces approach each other closer
than a few nanometers, these theories have been found to
be inadequate to predict the interactions between the sur-
faces, as other forces will play a role [3]. These short-range
forces are the solvation forces or hydration forces in the case
of water and they can be measured experimentally by the
surface force apparatus [3,4]. These short-range solvation
forces are monotonically repulsive, monotonically attrac-
tive or oscillatory with distance. At high liquid densities
these solvation forces show an oscillatory behaviour,
while at low liquid densities a purely exponential decay is
found, provided the liquid is sufficiently far from the critical
point and no phase transition occurs.

The oscillatory behaviour of the solvation force is now
well-understood for simple spherical molecules. Theoretical
work and computer simulations of Lennard–Jones fluids
and hard spheres show that the oscillatory solvation force
originates from the stratification or ordering of the mole-

cules in layers when the fluid is confined by the surfaces [5–
18].

Whether the structure of the solvation force is oscillatory
or monotonically decaying, depends also strongly on the
chemical and physical nature of the surfaces, for example,
whether they are hydrophilic, hydrophobic, smooth, corru-
gated, etc. On the other hand, the oscillatory behaviour is
very sensitive for the detailed chemical structure of the
molecules and the ability of the molecules to order. One
of the most striking examples of this sensitivity is the dif-
ference between the solvation force of linear and branched
alkanes. For example, experiments showed that a single
methyl side group on a linear octadecane chain can com-
pletely eliminate the oscillations in the solvation force
[19,20]. This phenomenon may be the reason why branched
alkanes are better lubricants than linear ones. A similar
difference was observed in force measurements of low
molecular weight polymer melts. Unbranched polydi-
methylsiloxane (PDMS) exhibits a short-range oscillatory
solvation force profile, while branched polybutadiene (PB)
shows only a monotonically decaying solvation force which
is long-ranged attractive [21,22]. However, recent computer
simulations of octane and isooctane did not reveal this unex-
pected difference in the solvation force profiles [23]. Also
recent experiments of 3-methylundecane show that the sol-
vation force show still an oscillatory behaviour, however the
amplitudes of the oscillations are smaller than for linear
undecane [24]. A similar decrease in the amplitudes of the
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oscillations has been found in recent computer simulations
of n-hexadecane and squalane [25].

In this article, we show by computer simulations that
there is indeed a difference in the solvation force and struc-
ture for confined films of branched and unbranched alkanes.
In Section 2, we explain our simulation method. In particu-
larly, we explain our choice of ensemble and we derive an
expression for the solvation force. In Section 3, we show the
results of the simulations. Our results show an oscillatory
behaviour for the solvation force of linear decane with a
periodicity close to the width of the alkanes. For 2-methyl-
undecane and 2-methylheptane, we still found oscillations
in the solvation force, but the amplitudes of the oscillations
are decreased with respect to n-decane. The solvation force,
however, is shifted to the attractive region. In order to inves-
tigate whether our measurements were sufficiently far from
the critical point, we located the liquid-vapour transition for
the confined fluid. In Section 4, we show that the critical
temperature of the liquid-vapour coexistence shifts to lower
temperatures upon confining and that the density of the
liquid in the simulations for the solvation force were suffi-
ciently far from the critical point.

2. Simulations

The surface force apparatus measures the force between
two molecularly smooth mica surfaces immersed in a fluid
as a function of the distance. In the experiments, the solva-
tion force is measured when a droplet is inserted between
the plates. The droplet is macroscopically large and serves
as a reservoir for the fluid between the plates, i.e. molecules
can flow in and out the slit under a fixed chemical potential
of the reservoir. In order to compute the solvation force in a
simulation, we compute the force exerted on the plates by
the fluid between the plates, while we keep the chemical
potential fixed, i.e. we did simulations in the Grand canoni-
cal ensemble.

Below, we will describe the thermodynamics of this sys-
tem in order to derive an expression of the solvation force
(see [26] for more details). When we describe the thermo-
dynamics of such an open system, we should consider the
grand potentialQ = U − TS− mN, whereU is the internal
energy,S the entropy,T the temperature, andN the number
of particles. The change in the grand potential of this system
is [26]:

dQ = −pbdVres−SdT−Ndm +2gdA−AfdH (1)

where pb is the bulk pressure,Vres is the volume of the
whole reservoir,A the area of the plates,H the distance
between the plates andf the solvation force. The plate-fluid
interfacial tensiong is given by:

g =
1
2

∂Q

∂A

� �
V,T,m,H

(2)

The last two contributions are due to the confinement and

depend on the area and the distance between the plates. We
now consider the same reservoir with the same volume and
chemical potential but without the plates:

dQ = −pbdVres−SbdT −Nbdm (3)

If we now define the surface excess functions

Qex =Q −Qb

Sex =S−Sb =2As

Nex =N −Nb =AG

we obtain

dQex = −2AsdT−AGdm +2gdA−AfdH (4)

which is a function of the temperature, chemical potential,
area and plate separation. The surface excess functions
separate the surface terms from the bulk terms. For a
bulk system, the grand potentialQb(m, V, T) is equal to:

Qb(m,V,T) = −pb(m, T)V (5)

as volume of the system is an extensive quantity. For a
confined system, there is an additional contribution to the
grand potential due to the surfaces, as the area of a single
wall A is an additional extensive quantity.

Q(m,V,A,H ,T) = −pb(m, T)V +2g(m,H ,T)A (6)

If we now consider a confined volumeV = AH, the grand
potential of the whole system can be written as:

Q(m,A, H , T) =A( −pb(m,T)H +2g(m,H ,T)) (7)

such that in the limitH → ∞, the grand potential contains
only a bulk contribution, i.e.

lim
H→∞

Q = −pbAH (8)

leading to the condition:

lim
H→∞

2g=H =0 (9)

This condition is satisfied as in the limitH → ∞,
2g → g1 + g2 is constant, whereg1 andg2 are the interfa-
cial tensions for the fluid with plate 1 and 2, respectively. If
we now consider the surface excess functionsQex = 2gA,
the differential ofQex is:

dQex =2gdA+2Adg (10)

=2gdA+2A
∂g

∂m

� �
T,H

dm +
∂g

∂T

� �
m,H

dT +
∂g

∂H

� �
m,T

dH

� �

(11)

This expression should be equal to Eq. (4), which leads to
the following relations:

G = −2
∂g

∂m

� �
T,H

(12)
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s= −
∂g

∂T

� �
m,H

(13)

f = −2
∂g

∂H

� �
m,T

(14)

In the limit H → ∞, the interfacial tension 2g → constant,
and hence, we find thatf → 0 for a semi-infinite system.

Using that Qex = 2gA and Qb = − pbV = − pbAH, we
obtain

g =
1

2A
[Q +pbAH] (15)

and the solvation force reads

f = −
1
A

∂Q

∂H

� �
m,T,A

−pb =pp −pb (16)

For a system with a plate atz = 0 andz = H, the fluid-wall
potential can be written asVext(z) = Vs(z) + Vs(H-z). The
pressurep* can now be computed as follows [27]:

pp =
1
A

∂Q

∂H

� �
m, T, A

(17)

= −
�H

0
dzr(z)

∂Vext(z)
∂H

By symmetry, we find that the force on the upper surface
is equal to the force on the lower surface:

p p =
�H

0

dzr(z)
∂Vs(H −z)

∂z
= −

�H

0
dzr(z)

∂Vs(z)
∂z

(18)

From Eq. (16), we find that the solvation force can be
computed by performing simulations for different plate
separations at a fixed chemical potential, temperature and
plate area. We therefore performed Grand canonical Monte
Carlo (GCMC) simulations of alkanes between two plates,
where the independent variables are the chemical potential,
m, the volumeV = AH and the temperatureT. In order to
obtain a fixed chemical potential, particles are exchanged
with a fictitious infinitely large reservoir which contains an
ideal gas of the same particles, i.e. the ideal alkane chains
have internal energies [28].

The alkanes are modeled by the united atom approxima-
tion, where every CH3 or CH2 group is described as a single
interaction site. The non-bonded dispersive interactions
between these ‘united atoms’ of different molecules or
within a molecule (when two atoms are more than four
atoms apart) are described with a Lennard–Jones potential.
The potential parameters of unlike bead interactions are
calculated using the Lorentz–Berthelot ruleseij = �������

eiej
p

andjij = ��������
jijj

p . In addition, we used fixed bond lengths, a
harmonic bond angle bending and a torsion potential. The
Lennard–Jones interactions are shifted and truncated at 13.8
Å [29].

The parameters for the potentials of the linear alkanes
were derived from calculations of the vapour-liquid phase
equilibria of n-alkanes by Smit et al. [30]. For the branched
alkanes, we used the model of Wang et al. [23], which is
based on Jorgensen’s optimized potentials for liquid simu-
lations (OPLS).

In our model, we confine the alkane fluid in thez-direc-
tion by two flat surfaces. In the vicinity of the surfaces, the
alkanes experience a potential field due to the solid surfaces.
In our simulations, we used a 9–3 wall-potential, which
corresponds to the summation of the mean field atom-
solid 10–4 potentials from different lattice planes of a
solid consisting of Lennard–Jones particles [31]. The values
of the parameters are taken from [32], where a simple 9–3
site-wall potential is introduced for a surface with some
texture. However, in our calculations we ignore the corru-
gation of the surfaces and we used the smooth potential. For
more detail on the precise values of the potential para-
meters, we refer the reader to [33].

Conventional Monte Carlo schemes are not sufficiently
efficient to ensure rapid equilibration, as direct insertion of a
flexible particle in a dense fluid almost always results in an
overlap with one of the other chains in the fluid. For a faster
equilibration of the alkanes, it is essential to use the config-
urational bias Monte-Carlo (CBMC) method [34]. In this
method, we grow the alkane chains segment by segment
in such a way that configurations with favorable energies
are found. For more technical details on the implementation
of the CBMC-method see [34,30].

Most runs consist of at least 108 cycles. In each cycle, an
attempt is made to regrow a part of the polymer using the
CBMC-method and a removal or insertion of a particle in
the box is attempted. On average, once every two cycles, a
random displacement and random rotation of a particle in
the box is attempted and once every five cycles, a whole
polymer is regrown at a random place in the box using the
CBMC-method.

3. Results and discussion

We perform computer simulations in the Grand-Canoni-
cal ensemble of a system of decane, 2-methylheptane and 2-
methylundecane. The fluid is confined by solid surfaces of
34 × 34 Å. The plate separations vary from 5 to 50 A˚ . In the
x- and y-direction, we use periodic boundary conditions,
such that an infinite, periodic system is simulated. In all
the simulations the temperatureT is fixed at a value of
298 K and the chemical potential is such that the density
of the reservoir corresponds to a liquid phase of
0.717± 0.008 g/cm3.

In Fig. 1, we plot the solvation force versus the distanceH
between the plates for n-decane 2-methylheptane and 2-
methylundecane. For n-decane, we observe strong oscilla-
tions with a periodicity of 4–4.5 A˚ , which is close to the
width of the alkane molecules.
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However, in the case of 2-methylheptane and 2-methyl-
undecane, the oscillations are less pronounced and are
shifted to the attractive region. At large plate separations,
the solvation force for the branched alkanes goes to zero. At
large plate distances the pressure exerted as the fluid
between the plates is equal to the pressure exerted by the
fluid outside the plates.

For 2-methylheptane the solvation force becomes zero at
plate separations larger than 30 A˚ . For 2-methylundecane,
we find that the solvation force approaches zero very slowly
with increasing plate separation.

We also compute the density distributionr(z) of n-decane
at different values for the plate separation. No adsorption of
alkanes are found for distances smaller than 5 A˚ . In Fig. 2a,
we observe one fluid layer for a plate distance of 5–8 A˚ . For
a separation of 9–12 A˚ (Fig. 2b), two layers are formed.
Three layers are observed for a separation of 13–16 A˚ (Fig.
2c), four layers for distances of 17–21 A˚ (Fig. 2d), and five
layers for distances of 22 A˚ (Fig. 2e). If we compare these
density distributions with the solvation force, we observe
clearly that one sharp peak at a distance of 5 A˚ corresponds
with a high value for the solvation force. When we increase
the distance we find that the density profile becomes
broader: the solvation force drops, i.e. the fluid can be
squeezed out easily. At a distance of 9 A˚ , we observe two
sharp peaks corresponding with a high solvation force. By
increasing the distance further the peaks become broader
and the solvation force drops. At a distance of 13 A˚ , three
well defined layers are formed: the solvation force is high.
The solvation force decreases with increasing distance till at
a distance of 17 A˚ a fourth layer appears. Again the two
layers in the middle do not fit well and the solvation force
increases when we increase the distance. At a distance of 18
Å, four sharp peaks are observed, etc. We can conclude that
the origin of the oscillations in the solvation force lies in the

stratification or ordering of the chains in layers. When the
density distributions show sharp peaks, i.e. when the fluid
orders in well-defined layers, the solvation force is high, i.e.
it is difficult to squeeze out the fluid between the plates. The
solvation force drops when the density distributions are
broader, i.e. when it is difficult for the molecules to form
well-defined layers. A similar behaviour it formed in the
density profiles of 2-methylundecane. We plot for compar-
ison the density profiles of n-decane and 2-methylundecane
in Fig. 3, when one, two three and four well defined layers
are formed between the plates. We took the density profiles
at the maxima of the oscillations. We observe that the pro-
files of decane are more strongly peaked than those of 2-
methylundecane. We also plot the density profiles for the
end methyl groups of 2-methylundecane. We observe from
these density profiles that one branched methylgroup is in
the fluid layer, while the other lies between the fluid layers.

In Fig. 4, we show a typical configuration of a layer of n-
decane atH = 5 Å. The density of this film is close to the
bulk liquid density of n-decane and the alkanes are disor-
dered in position and orientation. We therefore conclude
that the configuration is fluid-like. In Figs. 5 and 6 typical
snapshots are shown of n-decanes and 2-methylundecanes
adsorbed in a slit with a slitwidth of 9 A˚ , and 13Å (n-
decane) and 14 A˚ (2-methylundecane), respectively. We
clearly see that discrete fluid layers are formed in the case
of n-decanes, while the fluid is more homogeneous in the
case of 2-methylundecane.

If we compare our results with the experimental data of

Fig. 1. The solvation force in MPa versus the distanceH of the plates in A˚

for n-decane (open circles), 2-methylheptane (filled diamonds), and 2-
methylundecane (open squares).

Fig. 2. Density distributionr(z) in g/cm3 of n-decane at different values for
the plate separation (a) 5–8 A˚ , (b) 9–12 Å, (c) 13–16 Å, (d) 17–21 Åand
(e) 22 Å. The plate separation in A˚ is written in the figures.
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[19,24], we observe two remarkable features. Firstly, we
still find oscillations in the solvation force of branched
alkanes. We already mentioned that the origin of oscilla-
tions in the solvation force lies in the ordering of the mole-
cules in fluid layers. In the case of n-decane, well-defined
fluid layers are formed. However, the ability of branched
alkanes to form discrete layers is reduced due to simple
packing arguments, but is not completely eliminated, as
can be seen in Figs 3, 5 and 6. This explains the two or
three times weaker oscillations in our results in the case of
branched alkanes, which agrees well with Granick’s experi-
ments of 3-methylundecane and linear undecane and with
the simulation results of Gao [25].

The other surprising feature in our results is that the sol-
vation force of branched alkanes is shifted to the attractive
region. In Fig. 1, we see clearly that this shift in the solva-
tion force for 2-methylheptane is still present for plate
separations larger than 30 A˚ . This shift is even more pro-
nounced for 2-methylundecane, while for linear decane the
solvation force is already zero. From the density profiles of
Fig. 3, we can understand why the branched alkanes exhibit
a predominantly attractive force between the plates. The
reason is that repulsive contributions to the solvation force
stem only from particles close to the wall, i.e.−∂Vs(z)/
∂z . 0 when z , 2.6395 Å. Thus, a repulsive solvation
force can only be obtained when there is a strong ordering
of molecules close to the wall. In Fig. 3, we find that in the

case of branched alkanes, the ordering of the molecules
close to the wall is smaller in comparison with n-decanes.
The branched methyl groups frustrate the packing of the
molecules in the layer close to the wall and the molecules
will have a tendency to leave this layer. The amount of

Fig. 3. Density distributionr(z) in g/cm3 of n-decane (solid line) and 2-methylundecane (dashed line) and that of the end methyl groups of 2-methylundecane
(dotted line) versusz in Å for a plate separation of (a) 5 A˚ , (b) 9 Å, (c) 13 Åfor n-decane and 14 A˚ for 2-methylundecane, and (d) 17 A˚ for n-decane and 18 A˚

for 2-methylundecane.

Fig. 4. Typical snapshot of n-decane (xy-plane) at a plate separation of 5 A˚

(top view).
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interdigitation, i.e. in what extent individual molecules go
from one layer to another, increases in the case of branched
alkanes. This effect is already shown in [35], where mole-
cules with many side branches (like squalane) reveal a large
amount of interdigitation near a single wall. These bridges
between the individual layers may be a reason for this long-
range attractive force. This attractive solvation force agrees
well with the experiments of Israelachvili et al. [3,4,19].
They observe a long-range attractive force up to a plate
separation of 40 A˚ . As the amount of interdigitation varies
for different branched alkanes, the resulting shift of the
solvation force varies as well. This explains why we find a
different shift for the solvation force for 2-methylheptane
and 2-methylundecane for plate separations up to 50 A˚ .

In the simulations of Wang et al. [23] no remarkable
difference is found in the solvation force between linear
octane and branched iso-octane. However, in the simula-
tions of Wang et al. [23] the molecules could flow in and
out the slab and could evaporate and condensate in order to
mimic a liquid droplet in a slit that is in equilibrium with its
vapour. The resulting alkane density is hence 0.55–0.60 g/
cm3 in the slit, which is in the metastable region of the
liquid-vapour coexistence. They also found a large tendency
of the molecules to leave the slit. In order to overcome this
problem, they used a penalty function, such that a part of the
fluid remains in the pore.

4. Pore condensation

In order to investigate if the state points for measuring the
solvation force were sufficiently far from the critical point,
we located the liquid-vapour coexistence region for the con-
fined fluid. In order to characterise possible phase equilibria
in confined systems, we should ensure that the grand poten-
tial Qex

a for phasea is equal toQex
b for phaseb. As Qex = gA,

this condition can be rephrased asga = gb when the area of
the plates is kept constant. From Eq. (4), we observe thatQex

is a function ofm, T, A and L. One possible scenario for
investigating phase transitions in a pore is to increase the
chemical potential at fixed wall area, temperature, and plate
separation. By measuring the adsorption isotherm, i.e. the
density in the pore as a function of the chemical potential,

one should be able to locate the phase transition. However,
due to hysteresis, this procedure is very inaccurate in the
determination of the phase coexistence points. A better
route to locate phase coexistence is to perform Gibbs
ensemble simulations. An extensive derivation of the
Gibbs ensemble simulation technique applied for confined
systems is given by Panagiotopoulos [12]. However, intui-
tively, one can understand this as follows. In an ordinary
Gibbs ensemble simulation, volume and particles are
exchanged between two systems until the volumes and num-
bers of particles of the separate systems reach stationary
values within fluctuations. The resulting systems are those
of two coexisting phases at the same pressure due to volume
exchange and chemical potential due to particle exchange.
In a Gibbs ensemble simulation for confined systems, area
and particles are exchanged between the two systems, while
the plate separation is kept constant. The exchange of par-
ticles ensures equal chemical potential for both phases,
while the exchange of area ensures equal fluid-surface inter-
facial tension in the same spirit as the exchange of volume
serves for equal pressure in bulk systems.

We performed Gibbs ensemble simulations for linear
pentane for a plate separation of 9, 13, and 17 A˚ in order
to locate the vapour-liquid coexistence region. The results
are shown in Fig. 7. The results for the bulk are taken from
[30]. We observe that the critical temperature shifts to lower
temperatures with decreasing plate separation. This shift of
the critical temperature of the liquid-vapour coexistence to
lower temperatures upon confining is generic and is
explained in [36]. The variable 1/H plays a similar role as
the temperature. Since Van der Waals, it is known that
attraction betweenthe molecules is responsible for the
liquid-vapour transition. When the temperature rises the
attraction between the molecules decreases and above a
certain temperature (the critical temperature) the liquid-
vapour coexistence disappears, as the attraction is not suffi-
cient enough anymore to cause phase separation. When a
fluid is confined between two plates, the attraction between
the molecules is diminished as the number of neighbours
decreases. Already at lower temperatures the liquid-vapour

Fig. 5. Typical snapshots of n-decane (top) and 2-methylundecane (bot-
tom) at a plate separation of 9 A˚ (side view).

Fig. 6. Typical snapshots of n-decane (top) and 2-methylundecane (bot-
tom) at a plate separation of 13 A˚ for n-decane and 14 A˚ for 2-methylun-
decane.
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region disappears, which results in a lower critical tempera-
ture. Note that we can neglect here at a first approximation
the influence of the attractive walls as the walls are the same
for the liquid and vapour phase.

For longer alkanes the critical temperature will also shift
to lower temperatures upon confining, as this phenomena is
generic. We therefore can conclude that our simulations for
measuring the solvation force were sufficiently far from the
critical point and the occurrence of any phase transition.

5. Conclusions

We performed Monte-Carlo simulations in the Grand
canonical ensemble of a confined system of n-decane, 2-
methylheptane and 2-methylundecane. We computed the
solvation force exerted by the fluid on the plates. We
found a large difference in the solvation force for linear
and branched alkanes. For n-decane, we found an oscilla-
tory behaviour in the solvation force with periodicity close
to the width of the molecule. For the branched molecules,
we found that the oscillations are decreased and are shifted
to the attractive region, which might be the result of inter-
digitation that bridges the molecular layers formed in the
fluid.

In addition, we computed the liquid-vapour coexisting
regions of n-pentane confined in slits of 17, 13 and 9 A˚ .
The critical temperature of the liquid-vapour coexistence
shifts to lower temperatures upon confining and we can
therefore conclude that our simulations for measuring
the solvation force, were sufficiently far from the critical
point.
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