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Abstract

We studied the phase behaviour of, and long-time self-diffusion in, a binary dispersion of hard spheres with a size
ratio of 1:9.3. This system exhibits a fluid-crystal-type phase separation. The fluid-solid binodal was determined by
measurements of the compositions of coexisting phases, allowing a test of existing theories. By labelling either the
large or the small particles with a fluorescent dye the long-time self-diffusion coefficients of both particles could be
measured separately using fluorescence recovery after photobleaching (FRAP). Systematic measurements were carried
out for a wide range of volume fractions and mixture compositions. The low volume fraction behaviour was compared
with existing theory. For higher volume fractions formulae are proposed that represent the data well. At the highest
volume fractions long-time self-diffusion becomes arrested when the glass transition is reached. This is evidenced by
an incomplete decay of the correlation functions that are measured with FRAP. Evidence was found for the existence
of two different glassy states. In one of these both particles are structurally arrested. In the other, however, the small

spheres remain mobile, although the large spheres are structurally arrested.
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1. Introduction

Binary hard sphere dispersions have recently
attracted much attention as a result of the observa-
tion of superlattice formation at the freezing trans-
ition [1,2] and phase separation [3-5]. Until now
most attention has been focused on the static
properties of these asymmetric mixtures and much
less is known about their dynamical properties. In
this work aspects of both statics and dynamics of
a binary colloidal dispersion composed of hard
spheres with a size ratio of 1:9.3 are studied. In
addition to a study of the phase behaviour, we
present a systematic investigation of the long-time
self-diffusion coefficient of both the small and the
large spheres in the mixtures.
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In the description of asymmetric mixtures, the
concept of depletion attraction [6,7] is often used.
When two large particles approach each other, the
smaller particles are expelled from the gap. The
difference between the osmotic pressure in the gap
and in the bulk induces an effective attraction. An
important question is how this affects the phase
behaviour. The depletion effect is most clearly seen
in mixtures of colloidal hard spheres with polymer
molecules. For binary colloids, in which the small
particles also behave as hard spheres, the effect is
often much less pronounced. So far only parts of
the phase diagram have been obtained experimen-
tally, and they differ considerably from one system
to another [3-5]. From theoretical studies it seems
that the instability depends sensitively on approx-
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imations used for the closure [8-10] or the activity
of the small spheres [11,12].

In our mixtures one of the particle species, either
the larger or the smaller, is labelled with a fluo-
rescent dye. This enables us to measure the mobil-
ity of both particles separately by measuring their
long-time self-diffusion coefficients D,; using the
technique fluorescence recovery after photobleach-
ing (FRAP). This also provides information about
the nature of the phases formed (fluid, crystal,
glass). So far, the study of self-diffusion in disper-
sions of differently sized particles has mostly been
limited to dilute systems of highly charged spheres,
in which hydrodynamic interactions are negligible.
Since most of the earlier experiments used dynamic
light scattering (DLS) to measure particle
dynamics, they were limited to dilute dispersions
and to the measurement of the larger particles,
which scatter most of the light. Few investigations
of the long-time self-diffusivity of both particle
species exist [13]. Our systematic investigations
allow a test of theoretical expressions, given by
Batchelor [14], valid up to leading order in the
volume fractions of the components. For higher
volume fractions we shall present empirical expres-
sions that describe the data well.

2. Experimental details

Colloidal silica particles of two different sizes
were prepared, having hydrodynamic radii of 365
and 39 nm [15]. Of both particles we prepared a
separate batch in which the cores of the spheres
were labelled with the fluorescent dye fluorescein
isothiocyanate (FITC) [16], but which were care-
fully grown to the same size. The unlabelled large
particles are called L, and the fluorescent FL.
Likewise the small particle systems are called S
and FS. All four particles were transferred to a
solution of 0.0100 M LiCl in dimethylformamide
(DMF). This corresponds to a Debye screening
length of only 2.2 nm, making particle interactions
essentially hard sphere like. The particles are then
stabilized against aggregation by a thin DMF
solvation layer of a few nanometres thickness on
each particle surface.

Results of the characterization of the four par-

ticles are collected in Table 1. SLS was used to
measure the size of the large particles. From trans-
mission electron micrographs the polydispersities
o (standard deviation in the radius divided by the
mean radius) were determined. DLS was carried
out on very dilute samples in DMF (0.01 M LiCl),
yielding the particles’ diffusion coefficients D, at
infinite dilution. Hydrodynamic radii were calcu-
lated from the D, values using the Stokes—
Einstein relation.

Effective hydrodynamic volume fractions ¢ of
the four dispersions in DMF-0.01 M LiCl were
determined by measuring the intrinsic viscosity [r].
This quantity was determined by measuring the
increase in viscosity of dilute dispersions relative
to the solvent (¢ =0-0.02):

[7]="hm (n/no — 1)/¢ (1)
¢—0

For uncharged spheres [#] has the Einstein value
of 2.5. The hydrodynamic volume fraction is then
calculated by multiplying the dry silica volume
fraction, obtained by drying a weighed amount of
dispersion, with [#]/2.5. For the large spheres the
factor [5]/2.5 was about 1.2. For the small particles
we found a value of 1.5, reflecting the relatively
larger contribution of the solvation layer. All
volume fractions ¢ reported in this paper are
hydrodynamic volume fractions. The relative error
in these values is estimated to be 0.5%.

From concentrated dispersions of L, FL, S, and
FS particles, binary mixtures were obtained in
which either the small or the large particles are
labelled. By varying the ratio ¢y/¢s of volume
fractions of large and small spheres, phase behavi-
our was studied in the entire ¢,,¢¢ plane, once
with the small spheres labelled and once with the
large spheres labelled.

Long-time self-diffusion coefficients D,; were
determined by FRAP, as described in Ref. [17].
In this technique a short pulse of a high intensity
laser interference fringe pattern irreversibly
bleaches dye molecules inside particles. This creates
a long-wavelength sinusoidal pattern of bleached
and unbleached particles, which fades away as a
result of Brownian motion. The rate of this process
is monitored by oscillating the fringes at low
intensity over the bleached pattern. The emitted
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Table 1

Particle characterization results

Particle L S FS

a(SLS) (nm) 36545 365+5

a(DLS) (nm) (DMF?) 360+ 10 370+8 39+1 39+1

Do (x 10712 m?s~ 1) (DMF?) 0.739+0.015 6.37+0.18 6.39+0.16
o 0.03 0.03 0.12 0.12

SLS, static light scattering.
# Containing 0.0100 M LiCl.

fluorescence then oscillates as the monitoring and
bleached fringes fall into and out of phase, while
the amplitude of the oscillation decreases exponen-
tially in time, as exp (— D, ; k*t) with k the wavevec-
tor of the fringes, typically 10°~10°m™". In each
sample, about 15 measurements were recorded and
averaged to obtain D,; with a resulting statistical
error of 3% for FS particles and 6% for FL. The
larger error in the results of the large spheres is
caused by their weaker fluorescence. Diffusion
coefficients were normalized with respect to D,
the value at infinite dilution as measured with DLS
(Table 1).

3. Results and discussion
3.1. Phase behaviour

The nature of the different phases is shown in
Fig. 1(a). In most of the phase diagram the system
is a homogeneous fluid (F). Our phase diagram
differs from earlier investigations [3-5] in that we
observed a phase separation into a fluid and a
crystal formed by the large spheres. This occurred
in a region (F+C) in the lower right-hand corner
of the diagram, where ¢, > ¢s. Crystals nucleated
homogeneously throughout these samples, giving
rise to visible Bragg reflections, and settled under
gravity relatively quickly, forming a crystalline
sediment. A FRAP signal of the large spheres,
measured in the coexisting fluid, is shown in
Fig. 2(a). It decays single exponentially to zero, as
expected for a fluid. At high volume fractions we
could identify two different glassy phases with
FRAP. In the first we found that neither of the
particle species was fully mobile, and we therefore

indicate it by G{(Gs). The G (Gg) phase occurred
when ¢s> ¢, . The long-time self-intermediate scat-
tering function of neither the large nor the small
particles exhibited a complete decay: typical exam-
ples of FRAP curves are shown in Fig. 2(b).
Notice the long time span of the experiments.
Samples in this region were very viscous and the
speckles in the scattering pattern of the large
spheres were static, reflecting their immobility. In
the other glass phase, G (Fg), only the small
particles were free to move. Here, the FRAP curves
of the large spheres again decayed only partly, and
the scattering speckles were static. At the same
time, however, FRAP curves of the small spheres
invariably decayed to zero, though in a non-single-
exponential way (Fig. 2(c)). The small spheres
thus have a complete relaxation. Also, samples in
this region appeared to be less viscous than those
in the G;(Gs) phase. Possibly, the small spheres
are moving through a kind of porous medium
formed by the static large spheres. The two modes
in Fig. 2(c) are then explained by a fast intracavity
diffusion and a much slower diffusion from one
cavity to the next. It is possible that the space-
filling large sphere structure of ¢; =0.3-0.4 is held
together by the depletion attraction, caused by the
small spheres. However, since evidence for gelation
or flocculation is not found at any point in the
phase diagram it could also simply be an excluded
volume effect. The precise location of the line
separating the two glassy states is unknown, if a
well-defined transition exists at all.

More information about the fluid—solid coexist-
ence was obtained by constructing the fluid—solid
binodal. The binodal consists of a freezing line
with fluid phase compositions (¢g,, rs), and of a
melting line with solid phase compositions
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Fig. 1. (a) Phase diagram. @, homogeneous fluids; A, samples
separating into fluid and crystal; A, completely crystalline; W,
glassy samples; —, fluid-solid binodal from (b); - - -, glass
transition lines. (b) Construction of the fluid—solid binodal
(—). A, compositions separating into fluid and crystal; - - -, tie
lines connecting coexisting compositions (O); - , theory
from Ref. [12].

(@m.L> Pms)- For the one-component large sphere
system the freezing and melting volume fractions
¢ and ¢, were determined in the usual way [18]:
the fraction f,, of the system occupied by the
equilibrium crystal phase is found from the height

6 T T v T
F+C (a) 1
3' E
8
®
C
Ry
(7]
S
8
©
=
K=
w b
0-...11.. oa o 2 ¢ 1 ..l....-
0 500 1000 1500 2000 2500
8 T LA N T 7T T T
_ G, (Fg) (©) ]
S5 6
o
N
g 47
c L
o L
2 5
o' A b, W NPTyt |AIII.
0 500 1000 1500 2000 2500
time (sec)

Fig. 2. (a) FRAP signal S(¢) of the large spheres meas-
ured in the fluid coexisting with the crystal
(¢, =0.505, $5=0.0910, k=780240 m~1). (b) FRAP signals
in the G;(Gs) phase: large spheres (lower curve,
$.=0.0592, ¢5=0.499, k=463 320 m"!); small spheres (upper
curve, ¢, =0.0609, $s=0.516, k=206060m~'). (c) FRAP
signals in the G((Fs) phase: large spheres (upper curve,
¢, =0.435, $5=0.184, k=451 660 m~!); small spheres (lower
curve, ¢, =0.379, ¢s=0.239, k=203 700 m ™).

of the sediment after the crystallites have settled.
Effects of particle sedimentation and sediment
compaction are ruled out by monitoring the subse-
quent linear growth of the sediment, and extrapo-
lating this to zero time. f,,,, increases linearly with
the overall volume fraction and extrapolates to
zero at ¢;, and to unity at ¢,. We found
$¢=0.497+0.004 and ¢, =0.547+0.004, close to
the hard sphere reference values of 0.494 and
0.545[19].

For binary mixtures, points on the freezing and
melting lines must be found by determining the
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composition of one of the phases. Together with
Joryst the composition of the coexisting phase can
then be found with the lever rule. The volume
fraction of small spheres in the crystal can be
taken as zero, since even if the octahedral and
tetrahedral sites are filled completely with small
spheres, their volume fraction does not exceed
0.01. We determined the volume fraction of large
spheres in the crystal from measurements of the
Bragg diffraction angle 26 at the first diffraction
maximum. To this end a sample cuvette of 0.2 mm
thickness was placed in a cylindrical bath filled
with DMF-0.01 M LiCl to avoid refraction at the
interface, and illuminated by a laser beam. The
Bragg angle was measured while the crystallites
were still sedimenting, since otherwise the lattice
spacing is reduced by gravitational compaction.
Ascribing the diffraction maximum to an f.c.c.
(111) reflection the lattice constant & follows from
(2nb sin 6/4)*=3, where n is the solvent refractive
index and 4 the wavelength in vacuo. The volume
fraction ¢, ; of large spheres in the crystal is then
16na; /3b°. Although the crystal structure was not
determined, it is noted that assuming a hexagonal
close packing would lead to exactly the same
@1 Since the uncertainty in a, is 1.4% the error
in ¢, would be 4%. To avoid making such a
large error we calculated ¢, | by comparing b with
the value found in a monodisperse system
(1154 nm), so that ¢, ;=0.547 x (1154 nm/b)°.
This no longer depends on g; and reduces the
error to about 1%.

In Fig. 1(b) the resulting fluid-solid binodal is
plotted, with coexisting phases connected by tie
lines. More points on the freezing line were found
by diluting mixtures at constant ¢, /¢ to the point
where crystallization was no longer observed.
Included in the figure is the theoretical binodal
from Ref. [12]. Contrary to [3-5], we did not
observe fluid—fluid separation. This agrees with
recent predictions that the fluid-fluid spinodal is
metastable with respect to the fluid—solid binodal
[11,12]. The shape of the F+C coexistence region
also agrees qualitatively with these theories.
However, the latter strongly overestimate the
depletion activity of the small spheres. In our
system phase separation is found at larger ¢ than
in Refs. [3-5]. The binodals found in those investi-
gations also differ considerably from each other.

Since different particles were used in each case, it
could be that the binodal depends sensitively on
small deviations from true hard sphere behaviour.

Fig. 1(a) includes the fluid—solid binodal from
Fig. 1(b). Although the binodal extends over the
full width of the phase diagram, actual crystalliza-
tion is observed only in a limited region (F+C).
Therefore the fluid phases found above part of the
binodal are metastable with respect to the fluid—
solid binodal (region M). In such systems D, of
a large sphere was more than 50 times smaller
than its value at infinite dilution (Section 3.2.). It
is thus not surprising that crystallization rates can
be extremely small. Indeed, the time needed for
crystallites to become visible increased from about
15 min for monodisperse systems, through several
hours for the ¢,/¢ps=6.696 mixture, to almost 2
days for ¢, /¢s=2.650.

3.2. Long-time self-diffusion

We shall use the following notation. In the
symbol DY} the subscripts s and L indicate the
type of diffusion coefficient (long-time self). In
mixtures, the superscript between parentheses
refers to the type of particle (small or large) of
which the diffusion coefficient is given. If no super-
script appears, a one-component system is implied.

For binary mixtures that remained homogen-
eous, the long-time self-diffusion coefficients of the
small (labelled) spheres in the presence of large
(unlabelled) spheres are plotted in Fig. 3(a), and
for the large (labelled) spheres in the presence of
small (unlabelled) spheres in Fig. 3(b). Data of
one-component dispersions are also included. The
diffusivities are plotted vs. the volume fraction of
the labelled species, for several mixture composi-
tions ¢, /¢s. Note that, since the data were mea-
sured as a series of dilutions at constant ¢ /¢, the
volume fraction of unlabelled particles increases
in constant proportion to the volume fraction of
labelled particles. As expected, all diffusivities
decrease monotonically with volume fraction, and
more quickly so when the relative amount of
unlabelled particles is increased.

Theoretical expressions for mixtures of hard
spheres are known only up to the pair interaction
level, and are valid up to first order in volume
fraction. They were given by Batchelor [14], and
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Fig. 3. (a) Long-time self-diffusivities of the small spheres in
mixtures of compositions (from left to right curve)
P /Ps=4.424, 2.650, 1.588, 1.012, 0.677, 0.349, and only small
spheres. (b) Long-time self-diffusivities of the large spheres,
with compositions (from left to right curve) ¢; /¢s=0.119, 0.199,
0.356, 0.403, 0.610, 0.775, 1.121, 2.357, and only large
spheres. —, results of Eq. (6) and Eq. (7); compositions in the
same order.

take into account hydrodynamic interactions. For
the present size ratio his results are

DS /D =1-2.10¢s —1.07¢, (2a)
DX /DY =1-2.10¢, —2.38ps (2b)

In general the coefficients depend on the particle
size ratio and interaction potential. They can be
compared with those obtained from the measure-
ments. From Fig. 3 the initial slopes 49 were
obtained, defined by

D{L/DY =1+A4%,, i=SL (3)

In terms of Batchelor’s theory, Egs. (2a) and (2b),
the quantities 4 and A" depend linearly on the
ratios ¢, /¢s and ¢g/d, respectively:

AV =K} +Ki0/; 4

The experimental and theoretical 49 are plotted
in Fig. 4. The low volume fraction behaviour of
the small spheres follows the theory very well. A
weighted least-squares fit gives

(S) ¢

s,L L
—=1-—[(1.974+0.08)+(1.10+0.08 ——]
o5 [( )+ ( Vo Jts

(52)

This should be compared with the theoretical result
in Eq. (2a). For the large spheres we also find a

(a)

A 8)

(b)

A(L)

10

b./9,

Fig. 4. First order in volume fraction coefficients of D,, as
defined in Eq. (3). (a) Data for small spheres vs. ¢, /ds; (b) data
for large spheres vs. ¢¢/¢; ; —, theoretical results from Ref. [14]
given in Egs. (2a) and (2b).
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linear result:

Dy ds
: =1-[(1.9610.13)+(1.14-_i-0409)—:|¢L
Dy $r

(5b)

Comparing with Eq. (2b), it is seen that the
intercept in Fig. 4(b), which is determined by L-L
interactions, is close to the expected value.
However, the slope, determined by L-S inter-
actions, is a factor of 2 smaller than the theory
predicts, resulting in a diffusion coefficient that is
somewhat larger than expected.

The lack of agreement for the large sphere
diffusivity probably has its origin in the huge
difference between the numbers of large and small
particles. This is a consequence of the extreme
difference in the particle volumes of the two
species: for all practical values of ¢; /¢5 the number
of small spheres exceeds the number of large
spheres by a factor of more than 100. Even in a
dispersion as dilute as ¢; +¢5=0.01, a large sphere
is therefore unlikely to interact with just one small
particle at a time. For this reason the theoretical
value Kjg= —2.38, which accounts only for pair
interactions, is probably not applicable. It is more
likely that the measured value Kjg= —1.14 corres-
ponds to the friction of a large sphere moving
through a dispersion of small spheres, which is in
itself dilute in the sense that the small spheres
undergo almost exclusively two-particle inter-
actions. It is difficult to estimate how this should
influence D{}, because a many-particle theory is
not available. The depletion attraction does not
provide an explanation for the larger diffusion
coeflicient found experimentally. Several theories
have incorporated the effect of interparticle inter-
actions on D, (in addition to the hard core
repulsion) up to the pair interaction level.
However, they predict that attractions give smaller
instead of larger D [14,20].

We now develop a model to describe the diffu-
sivities of both particles in a mixture of any
composition. As noted before, a tracer particle,
whether it is small or large, interacts much more
frequently with small particles than with large
particles, since the former are much more abun-
dant and much more mobile (having a larger

Dy). Long-range interactions are absent, so
between collisions with large particles the tracer
effectively diffuses through a dispersion containing
only small particles. Therefore, a small tracer
particle is interacting most of the time with a
neighbouring cage of other small particles, while
the large particles are obstacles which it has to
diffuse around. A large tracer particle, on the
contrary, is so large that it can only be encaged
by other large spheres, while the small spheres
merely slow down its motion inside the cage. In
this view, the interactions between tracer and small
spheres are decoupled from the interactions
between tracer and large spheres. These considera-
tions led us to a model to describe the D} data
in a way that is somewhat similar in spirit to an
idea of Medina-Noyola [21]. He suggested the
separation of D,; for a one-component system
into a factor D, accounting for the hydrody-
namic interactions that operate on a short time
scale, and a factor accounting for collisions
between particles that take place on a much longer
time scale.

First, imagine that the tracer particle is of the
small type, and is placed in a dispersion containing
only large spheres. Assume that we know its
diffusion coefficient D) (¢5—0,4,) for this situa-
tion. Then add many other small spheres up to an
overall volume fraction of ¢g. Between interactions
with the large spheres, the tracer now diffuses
through a dispersion of other small spheres with
an effective volume fraction of about ¢g/(1—¢,),
owing to the excluded volume of the large spheres.
Having to move through the dispersion of small
spheres reduces the tracer’s diffusion coefficient by
a factor of D, (ds/(1—¢y)/Dy, which is just the
one-component hard sphere value. The resulting
diffusion coefficient is then given by

),

DEL(¢s.¢1) =D ($s =0, ) —————— (6)
D,

If, on the contrary, the tracer is a large sphere,
then its diffusion coefficient, when first placed in a
dispersion of other large spheres, is given by the
one-component value D,,(¢;). Again small
spheres are added. Between collisions with the
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large spheres the tracer is slowed down by a factor
of D& (¢s/(1—¢),¢—0)/D. This is the (rela-
tive) diffusion coefficient of a single large sphere
in a dispersion of only small spheres. Hence

1 _¢L D 0

Egs. (6) and (7) can be used to predict DY) in
a mixture of any composition, starting from two
limiting cases. The second factor on the right-hand
sides of Eqgs. (6) and (7) is the known one-compo-
nent quantity, which can be taken from Fig. 3.
The first factor in each equation cannot strictly be
measured but can be estimated from the mixture
with the smallest proportion of respectively small
and large spheres. D) (¢s—0,4,) can thus be
obtained from the data in Fig. 3(a) at
¢ /9ps=4.424, by dividing it by the second factor
in Eq. (6) which is close to unity for this composi-
tion. In the same way, the factor D (¢s/(1—¢),
¢, —0) follows from the data in Fig. 3(b) at
¢./¢s=0.119 by dividing by the second factor in
(7), which is again almost unity.

The predictions of Egs. (6) and (7) calculated
at ¢, /¢s ratios corresponding to the experimental
ratios are also shown in Fig. 3(a) and 3(b). The
small sphere diffusivity is predicted accurately up
to high volume fractions. For the large spheres
Eq.(7) follows the data well for mixtures with
¢ /$s<0.5. However, for mixtures with a larger
proportion of small spheres, D{Y{ is overestimated
considerably at higher volume fractions. This
might be an indication that the depletion attraction
is active, lowering the diffusivity of the large
spheres. However, since the above model ignores
multiple interactions of the tracer with two or
more particles of different types, this also under-
estimates the friction on the tracer. It is therefore
hard to pinpoint the effect of the depletion attrac-
tion on the diffusivity, because there exists no
reference in which this attraction is absent.

4. Conclusions

We studied the phase diagram of and long-time
self-diffusion in a binary colloidal dispersion with

a size ratio of 1:9.3. This mixture exhibits phase
separation into a colloidal fluid and a colloidal
large sphere crystal. An extended, long-lived meta-
stable fluid region and two different glassy states
are also found. In one type of glass state both
particle species are structurally arrested. The other
glass, occurring in systems that are rich in large
spheres, is unusual. Although the large spheres are
structurally arrested, the small spheres still exhibit
complete relaxation of the FRAP correlation
function.

The long-time self-diffusion coefficient of both
particle species was extensively studied as a func-
tion of composition and total volume fraction.
The diffusivity of the small spheres in mixtures
with low volume fractions was completely in line
with Batchelor’s pair interaction theory [14]. The
diffusivity of the large spheres in mixtures with
small spheres could not be explained by the theory.
Because of the large difference in size between the
particles, pair interactions between a large sphere
and the many small spheres may be so rare that
the theory does not apply. For higher volume
fractions we proposed Eqgs. (6) and (7), in which
the friction experienced by a tracer particle due to
the presence of the small spheres is decoupled
from the friction due to the large spheres. These
formulae represent the diffusivities reasonably well
for the large spheres, and quite accurately for the
small spheres.
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