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Evidence for Entropy-Driven Demixing in Hard-Core Fluids

Marjolein Dijkstra and Daan Frenkel
Foundation for Fundamental Research on Matter-(FOM), Institute for Atomic and Molecular Physics,
Kruislaan 407, 1098 SJ Amsterdam, The Netherlands
(Received 7 October 1993)

We report the first observation, by computer simulation, of a purely entropic demixing transition
in a three-dimensional binary hard-core mixture. This transition is observed in a mixture of large
and small cubes. We also find evidence for demixing in other hard-core fluids and, in the case of
an athermal polymer solution, we observe a purely entropy-driven polymer collapse. For the study
of both the hard-core demixing and polymer collapse, it was essential to use novel collective Monte

Carlo moves.

PACS numbers: 82.60.Lf, 61.25.Hq, 64.75.+¢g

The theoretical study of the causes of phase separa-
tion in binary mixtures is one of the oldest in statis-
tical thermodynamics. In fact, for simple liquid mix-
tures [1] the first microscopic theories date back to van
der Waals, while for polymer solutions the Flory-Huggins
theory plays a similar role. In view of the almost over-
whelming amount of experimental and theoretical work
that has since been spent on the study of liquid mixtures,
one might think that the factors that are responsible for
demixing are, by now, well understood. Surprisingly, this
is not the case. In particular, it is still an unresolved ques-
tion if demixing can be driven by entropic effects alone.

Of course, from thermodynamics we know that phase
separation will take place in a system at constant vol-
ume and temperature T, if this results in lowering the
Helmbholtz free energy A = E — T'S. There are two ways
to lower the free energy of a system: One is to lower the
energy E; the other is to increase the entropy S. Most
theories of fluid mixtures are based on the assumption
that demixing results in a lowering of E and, at the same
time, an increase of —T'S. However, if we consider ather-
mal mixtures, i.e., mixtures of particles that have only
excluded volume interactions, then phase separation can
only occur if demixing results in an increase of the en-
tropy. One trivial way in which this can happen is if the
hard-core interactions in the mixture are “nonadditive,”
i.e., oaB > (044 + 0BB)/2, where o;; denotes the dis-
tance of closest approach of particles of type ¢ and j. In
fact, the demixing transition in nonadditive hard-sphere
mixtures is well established and has been studied exten-
sively [2-4].

More interesting is the case of additive hard-core mix-
tures, i.e., cap = (044 +0BB)/2, and here the situation
is more confused. For additive hard-sphere mixtures, we
have two conflicting predictions. In 1964 Lebowitz and
Rowlinson [5] showed that the (approximate) Percus-
Yevick integral equation for hard-sphere mixtures pre-
dicts no fluid-fluid phase separation for any size ra-
tio or density. Indeed, simulations of hard-sphere mix-
tures have thus far not provided any evidence for fluid-
fluid demixing [6-10]. However, more recently Biben

and Hansen [11], using the so-called Rogers-Young in-
tegral equation for hard-sphere mixtures, found evi-
dence for a spinodal instability in a fluid mixture of
spheres of sufficiently dissimilar sizes. Similar predic-
tions have subsequently been made with other approxi-
mations [12]. Clearly, it would be interesting if the ex-
istence of a demixing transition could be unambiguously
demonstrated in a computer simulation of an additive,
hard-core mixture.

In this Letter we present the results of such a simula-
tion study. The model that we consider is a mixture of
large and small cubes on a lattice. This model is clearly
additive: It differs from hard-core lattice models stud-
ied previously [13] in that it can fill space at close pack-
ing both in the mixed and in the pure phases. Hence
there is no trivial volume-driven demixing. In our sim-
ulation we considered mixtures of cubes with diameter
ratios (i.e., ratios of the edge lengths) of 2 or 3. The
diameter of each cube corresponds to an even number of
lattice spacings. We performed grand canonical Monte
Carlo (GCMC) simulations [14] where the independent
variables were the fugacities of the large and the small
cubes. In order to speed up equilibration, we used collec-
tive particle moves that employed a generalization of the
configurational-bias Monte Carlo scheme of Ref. [15]. In
this approach, the large particle was moved to a random
trial position. Typically several small particles would
occupy this region in space. These particles were then
moved to the volume vacated by the large particle, and
inserted using Rosenbluth sampling [16]. The trial move
was then accepted with a probability determined by the
ratio of the Rosenbluth weights of the new and the old
configuration. Of course, a trial move would be rejected
immediately if it resulted in overlap of two or more large
particles. In addition to the moves in which we displace
particles, we also perform trial moves in which we add or
remove a large or small particle and trial moves that at-
tempt to change the identity of a particle (large to small,
or vice versa).

In Fig. 1, the fugacity of the large cubes is plotted
versus the volume fraction of the large cubes for a mix-
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FIG. 1. Equation of state of a binary mixture of large and small cubes on a lattice. The figure shows the dependence of the
fugacity z on volume fraction ¢ for the large cubes at different values of the fugacity of the small particles. The left half of
the figure shows the results for a binary mixture of cubes with diameter ratio 2 (2eman = 100,10%,10%, and 10°, from top to
bottom) and the right half shows the results for diameter ratio 3 (zsman = 0, 100, 500, 103, 1.5 x 10%, 2 x 10%, and 5 x 10°,
from top to bottom). The shaded area indicates the approximate location of the two-phase region.

ture of cubes with diameter ratio 2 or 3. For a diameter
ratio of 3, we observe that, as we increase the fugacity
of the solvent (i.e., of the small particles), the slope of
the curves of constant solvent fugacity tends to zero at
the inflection point. For still higher solvent fugacity, we
find two different volume fractions for the large cubes for
the same fugacity for the large particles. This is exactly
what we expect for a demixing transition. When we take
this into account we can sketch the demixing region, as
shown in Fig. 1. In both phases, the cubes are equally
likely to be found on all lattice sites (i.e., there is no
sublattice ordering). Hence, the present phase transition
corresponds most closely to liquid-liquid coexistence in
an off-lattice system. As simulations in the demixing re-
gion are very time consuming, we have not attempted to
locate the binodal curve more accurately. For a diameter
ratio of 2, we find no evidence for a similar flattening
of the isofugacity curves. Thus we find no evidence for
a demixing transition in the latter system. However, if
instead of cubes we consider platelets, with a compara-
ble volume (6 x 6 x 2, instead of 4 x 4 x 4 in units of
the lattice spacings), we again observe demixing. This is
plausible for the following reason: When two large par-
ticles are brought into contact, the volume accessible to
the small particles increases by an amount that is propor-
tional to the diameter of the small particles and the area
of contact of the large particles. The resulting gain in
entropy of the solvent is the driving force that makes the
large particles cluster. The larger the surface-to-volume
ratio of the large particles, the stronger is the tendency
to demix. The above argument should apply not only to
rigid particles, such as rods and disks, but also to flexible
particles such as linear polymers.

We therefore also looked for entropic demixing in an
athermal polymer solution. In fact, in this case we did

not study the demixing directly. Rather, we looked
for a closely related phenomenon, namely, the solvent-
induced collapse of an isolated polymer. This collapse
signals the transition from the good-solvent to the poor-
solvent regime. There are compelling theoretical argu-
ments to assume that a polymer collapse must occur in
an athermal polymer solution, when the polymer-solvent
interaction is nonadditive [13]. In order to investigate
if such a collapse can occur in an “additive” athermal
polymer solution, we performed simulations of a single
hard-core polymer in a solvent of cubes, where the size
of the cubic monomers of the polymer was the same as
the size of the solvent molecules, namely, 2 x 2 X 2 in
units of the lattice spacings. For the equilibration of
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FIG. 2. The mean square of the radius of gyration (R2) of
a polymer with cubic monomers with and without solvent ver-
sus the number of segments. Average solvent volume fraction:
0.0 (open circles), 0.3 (crosses), and 0.7 (open diamonds). The
dashed lines are a guide to the eye and have a slope of 0.58
(polymer in a good solvent) and 1/3 (“Euclidean” scaling).
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FIG. 3. Snapshot of conformation of a hard-core lattice
polymer (N = 100) without hard-core solvent (top) and in a
solution of hard-core monomers with a volume fraction of 0.7
(bottom). Note the solvent-induced collapse.

the polymer it was essential to use a novel Monte Carlo
scheme. In this scheme, we included collective Monte
Carlo moves that allowed us to carry out conformational
changes on any subsection (interior or terminal) of the
polymer chain [17].

We performed simulations of a single polymer at dif-
ferent values of the chemical potential of the solvent. We
find that the square of the radius of gyration Rg scales as
N?, where N denotes the number of monomeric units
in the polymer (see Fig. 2). For low solvent fugacities
that correspond with solvent volume fractions of 0 and
about 0.3, we find v = 0.56 & 0.02, which corresponds to
the case of a polymer in a good solvent (v ~ 0.58). In
contrast, for a higher value of the solvent fugacity (corre-
sponding to an average solvent volume fraction of 0.7), we
find v = 0.34 £ 0.02. For a collapsed polymer we expect
“Euclidean” scaling: v = 1/3. Hence, by increasing the
solvent fugacity in this athermal polymer solution, we can
make the polymer collapse. Figure 3 illustrates the very
drastic change in the polymer shape with increasing sol-
vent fugacity. It is important to note that the collapse of
the polymer chain in a solvent is, in a sense, counterintu-
itive. If one considers the polymer chain, there is a large
amount of entropy lost by the polymer. However, the in-
crease in entropy of the solvent molecules overrides this
apparent loss. The observation of such a solvent-induced
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polymer collapse immediately implies the existence of a
demixing transition in this athermal polymer solution.
The present simulations support existing theoretical pre-
dictions of the existence of entropy-driven demixing in
polymer blends and solutions [18,19]. Although simula-
tions of athermal polymer solutions have been reported
before [20], the present result is to our knowledge the first
unambiguous demonstration of a purely entropic polymer
collapse.

In summary, we have presented the first observation
of a demixing transition in an additive hard-core lattice
mixture and we have found a purely entropy-driven col-
lapse in a lattice model of an athermal polymer in a hard-
core solvent.
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FIG. 3. Snapshot of conformation of a hard-core lattice
polymer (N = 100) without hard-core solvent (top) and in a
solution of hard-core monomers with a volume fraction of 0.7
(bottom). Note the solvent-induced collapse.



