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Abstract. A very simple lattice model is prasented for mixtures of alkali metals and alkali
halides, like K,(KCI);_,. The valence electrons are assumed to be excluded from the Wigner—
Seitz. spheres associated with the anions, while they are uniformly distributed over the cation
Wigner—Seitz spheres. The calculated excess volume of mixing turns out to be positive over
most of the concentration range, in qualitative agreement with experiment, provided the surface
energy of the electrons, associated with the boundary of the anion Wigner—Seitz spheres, is
taken into account. The results of this model differ considerably from eartier predictions based
on linear electron screening theory.

1. Introduction

Solutions of alkali metals in alkali halide melts, of the form M,(MX),_,, where x
denotes the mole fraction of metal, undergo a continuous metal-non-metal transition, as
the concentration x varies from the pure metal end (x = 1, metallic liquid) to the pure salt
(x = 0, ionic liquid). This transition indirectly shows up in the qualitative change of the
pair structure, as measured by neutron diffraction experiments [1], in the appearance of a
miscibility gap for certain melts, like K, (KCl),_,, and in the rapid change of the collective
density fluctuation spectra, as measured by inelastic neutron scattering experiments [2] or
by molecular dynamics simulations [3].

The change in electronic structure renders a theoretical description of metal—salt
solutions a difficult task. A systematic but rather naive approach is to assume that the
Coulombic interactions between ions are linearly screened by the gas of degenerate valence
electrons at all concentrations x. This approach is known to be valid for the pure metal
(x = 1) [4], but becomes questionable in the presence of anions (x < 1). Nonetheless
linear screening theory, which is equivalent to second-order perturbation theory in the ion—
electron coupling, has been applied to K, (KCl);_, solutions [5]. The resulting pair structure
and phase diagram are in rough, qualitative agreement with experimental data, but the
theory is incapable of reproducing the finer details, like the long-wavelength concentration
fluctuations, as probed by the small-angle diffraction experiments, or the magnitude and sign
of the excess molar volume of mixing. Whereas the theory predicts large negative excess
volumes at all concentrations, careful thermodynamic measurements lead to a much smaller
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positive excess volume at intermediate concentrations [6]. This qualitative discrepancy
between theory and experiment is almost certainly due to the inadequacy of the linear
screening approximation, which treats anions and cations on an equal footing, while it is
quite clear that the former strongly repel the valence electrons and the latter tend to build
up an excess density of valence electrons in their vicinity.

The aim of this paper is to present a very simple model which accounts for the anion—
cation asymmetry and to show that this model is capable of predicting at least the right sign
of the excess molar volume.

2. The model

One mole of M, (MX);_, contains N; = Na, M* cations, N; = (1 — x)Nx, X~ anions
and Ng = N; — N, = xNa, valence electrons (N, denotes Avogadro's number). In our
model, the N = N; -+ N; ions are distributed on the N sites of a simple cubic lattice.
Each ion is assumed to be fixed at the centre of a spherical Wigner—Seitz (Ws) cell of
volume v = V/N and of radius @ = (3u/4r)'/3. The valence electrons occupy the volume
V! = Nyv = V — N,v, i.e. they are assumed to be excluded from the ws cells associated
with the anions. The effective electron density is hence
ND X
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and the usual dimensionless electron density parameter is
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where gg is the Bohr radius. It is convenient to define a similar parameter associated with
the ion density, namely:
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In the pure salt limit {(x — 0), r; diverges, as there are no valence electrons left, while R,
remains finite, Each ws cell associated with an anion carries a charge —e, while each cell
associated with a cation carries a charge +¢ (1 — x). Moreover, the valence electrons are
assumed to be uniformly spread over the cation WS cell, i.e. they are not polarized by the
cation at the centre. Neglecting van der Waals interactions between ions, the total energy
U of the model is the sum of an electrostatic Madelung term Uy, a Born repulsion term
Us between neighbouring ions of opposite charge, and an electronic term U,

U=Uy+Usg+ Uy 4)

These three terms are evaluated as follows.

(1) The Madelung energy results from Ny positive point ions of effective charge e (1—x),
and N2 = (1 — x)N; negative point ions of charge —e, which are distributed on a simple
cubic lattice. The Madelung energy is of the form

UM 82

N - a u(x) (3)
where u(x) = 0 for x = 1, while for x = 0, u(x) equals the Madelung constant of the
NaCl structure, i.e. 0.8738 x (3/4m)!/3 = 0.54206. For intermediate concentrations, u(x)
has been determined by choosing among all possible distributions of positive and negative
ions on the simple cubic lattice, the one that yields the lowest electrostatic energy. The
optimization was achieved by starting from the known lowest-energy structure at x = 0.
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The metal concentration was then progressively increased and oppositely charged ions were
permuted within a zero-temperature Monte Carlo scheme for periodic samples of N = 64
and 216 ions. The results of these calculations are plotted in figure 1 and may be fitted to
a simple parabolic form according to

3\ /3
u(x) = (E) [0.8738 — 1.2374x -+ 0.3636x2]. 6
The Madelung energy in Rydberg units, which are used throughout, becomes
U 2u(x)
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Figare 1. Madelung energy, as defined in (5), multiplied by (4m/3)Y/* versus metal
concentration x. Thus, —Upm/N is given in units of 2 /d, where d is the cubic lattice constant.
The black dots are the results from the Moate Carlo optimization for a periodic sample of 64
particles, while the open triangles are for a sample of 216 particles.

(i1) The Born term results from the exponential repulsion between oppositely charged
nearest-neighbour ions. Each cation is surrounded, on average, by v{l —x)/(2 — x) anions.
For a simple cubic lattice the coordiation number v is equal to 6.The Born repulsion energy
per ion in Rydberg units reads:

Ug (1—x) _,p
N e T (8)
The reduced parameters for a KCl pair are taken at their usual Tosi-Fumi [7] values, 1.¢.
% = 131.26 and o = 2.530.

(iii) The electronic contribution to the energy is the sum of a bulk term and a surface
term. The bulk term corresponds to the N partially filled ws cells associated with the
cations. The surface term resuits from the N; empty WS cells associated with the anions,
which may be regarded as spherical cavities ‘cut’ into the electronic ‘jellium’:

Ug = Ni€p(rs) + Nags(rs). 9
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The bulk energy e, and the surface energy ¢, may be taken at their ground state
values, since the electron Fermi temperature Tr far exceeds the thermodynamic temperature
(T =~ 10°K), except at very low metal concentration (r; 3> 1), where the electronic
contribution becomes vanishingly small. These ground state vaives depend only on the
density parameter r;.

Since the fractional number of valence electrons in each cation WS cell is x, the bulk
energy &,(rs) is of the form

€p(rs) = x€o(rs) + €cxi(rs) + €cou(7s) (10)

where €o(7s) is the ground state energy per electron of the uniform jellium, €. (r;) the
interaction energy of the electron gas with the cation at the centre of the spherical WS
cell and €. (rs) is the Coulomb energy of the electron gas uniformly distributed over this
cell. The ground state energy per electron ep{r;) splits into the usual kinetic, exchange and
correlation contributions and reads in Rydberg units as follows:

221 0916
€ors) = & + €ex + €oonr = —5~ — —— + €ean(1s)- (11)
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For € (rs) we have used the standard parametrization of the Monte Carlo data of Ceperley
and Alder [8]:

2y
1 +ﬁ1'\/r_s+ﬁ2rs

with y = —0.1423, 8, = 1.0529 and S, = 0.3334. Assuming a simple Ashcroft ‘empty
core’ ion—electron psendopotential with core radius r; [4], the ‘external’ contribution reads:

€corr(Fs) = (12)
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where r. is in atomic units. Finally, the Coulomb contribution can easily be calculated:
6 x?
€canl = = ==—. 14
caul 5R, ( )

The surface energy €s(r;) in (9) is the product of the surface 5 of a WS cavity and the surface
energy o of the jellium model. If the latter is expressed in Rydbergs divided by the square
of the Bohr radius ag, the surface energy &(7;) is

€s(rs) = so = 4w R0, (15)

o has been calculated for a planar interface {91 and the results for ry 2> 5, which are relevant
in the present study, may be approximately fitted by the simple power law

00

o(rs) = (16)

S
with 7 = 2.75 and o >~ 10~2 Ryd/a3. However, curvature corrections are expected to be
quite important in view of the atomic size of the WS spheres, so it is preferable to treat the
factor op as an adjustable parameter in the subsequent calculations.
With €,(rs) and €;(r;) given by formulae (10)—(16), the electronic energy per ion finally
reads

1
1) é(r, s)+(2_ )Gs( rs). (17)
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3. Concentration dependence of the excess molar volume

The molar volume Vi, at constant pressure P is calculated for each concentration x by
solving the equation
d(U*/N)
drR,
where Ry = x!/%r;, P* = Paj}/e® is the imposed pressure in atomic units and U*/N is
the total energy per ion in Rydbergs, as calculated along the lines laid out in the previous
section. From the value of R; which solves (18), the molar volume V, may be calculated
according to

—8x R2P* (18)

Vin = Nay(2 — x)4ma’ /3 = 0.3733(2 — x)R? em’. (19)

In the limiting case x = 0 (pure salt), the electronic contribution vanishes and with the Born
repulsion parameters appropriate for KCI a molar volume Viu(x = 0) of 39 cm? is found
at zero pressure (P* = 0 in (18)). This lies about 10 cm® below the experimental value at
T =1123 K [6].

This discrepancy should not be surprising, since the present lattice theory amounts to 2
zero-temperature calculation. The difference between theory and experiment can hence be
traced back to thermal expansion and to the volume change on melting, which is particularly
large in KCl, nearly 20%.

In the pure metal limit, the calculated molar volume depends sensitively on the
pseudopotential radius r.. The standard value for r. is determined from conductivity
measurements at melting (i.e. close to room temperature) and is equal to 2.23 in atomic
units. This value for r. leads to a molar volume at zero pressure of about 41 em?®, which
lies roughly 20 cm?® below the experimental values [6]. However, there is no compelling
reason for which the phenomenological value of r. should be the same at room temperature
and at T = 1123 K. Hence, we have rescaled 7. in order to achieve a molar volume of
the pure metal which lies about 10 cm® below the experimental value, as was also the case
for the pure salt. For the pure metal a molar volume Vy, of 49 cm® is obtained by using
r. = 2.4 atomic units. This value for », was kept throughout our calculations.

For intermediate concentrations (0 < x < 1), the surface energy ¢ of the electron gas
turns out to play a crucial role. If this term is neglected in the electronic contribution to
the energy (see (9)), the excess molar volume

AV (P*, X) = Vig(P*, x) = xVn(P* x = 1) — (1 = x)Viu(P* x = O) (20)

turns out to be invariably negative as shown in figure 2. This situation, which contradicts
the experimental findings [6], is reminiscent of the result obtained from linear screening
theory {5]. However, the absolute values of the excess molar volume are considerably
smaller than in the latter case and this points, hence, to an improvement due to the
approximate inclusion of non-linear screening effects within the present model.
Using (15) and (16), the surface energy per electron in Rydbergs reads
2B
&(rs) = SO-JF‘- (21)
H

where 5o ~ 0.132, for a planar surface. However, as pointed out earlier, this value is
irrelevant in view of the strong curvature of the WS spheres. We make the assumption that
the functional form of &/(r;) remains the same for a curved interface, but that curvature
renormalizes the prefactor sp. Since the radius of the WS sphere changes only slightly in
going from the pure metal (x = 1) to the pure salt (x = 0}, a constant value of sy is
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Figure 2. Molar volume ¥ (in em’) versus metal concentration x, calculated with different
values for the surface energy scale factor sg in (21); 5o = 0 (full curve), 0.396 (dashed curve)
and 0.792 Ryd (dashed-dotted curve).

assumed. Molar volumes calculated with two different values of so (equal to three and six
times the planar surface value) are compared in figure 2 with the predictions of the theory
when so = 0. It shows that AV, becomes increasingly positive, at least on the metal-rich
side, as sp increases. When so = 0.792, AV, is positive over most of the concentration
range in qualitative agreement with experiment.

The influence of the pressure on the molar volume may be expected to be strongly
underestimated in our zero-temperature model, which should be much less compressible
than the melt above 10° K. Indeed we found that, in order to reproduce the experimentally
observed variations of the molar volume with pressure [6], the experimental pressures had
to be multiplied by roughly a factor of 5. The x-dependence of the resulting molar volume,
calculated with sy = 0.792, is plotted in figure 3 for P = 0, 4000 and 8000 bar.

4. Discussion

The present simple lattice model for metal-salt solution has been designed to account in
a highly phenomenological way for non-linear screening of the ionic Coulomb interactions
by valence electrons. Once the interaction parameters have been fixed to ensure reasonable
molar volumes of the pure phases (bearing in mind that this is a zero-temperature
calculation), the only adjustable parameter is the scale of the surface energy of the electron
gas (jellium). It is shown that positive excess molar volumes over most or all of the
concentration range are obtained for reasonable values of the surface energy. However, the
agreement with experimental molar volume data can only be regarded as, at best, qualitative.
These data indicate vanishing excess molar volumes AV, in the vicinity of the pure phases
(x =~ 1 and x ~ 0), whereas the present calculation predicts a rapid increase of AVp, as
x departs from 1. On the salt-rich side, the model leads to small negative values of AVy,
other than for sufficiently large surface energy scales which strongly exaggerate the absolute
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Figure 3. Molar volume Vy (in cm?) versus metal concentration x, for P = 0 {upper cgrve},
4000 (middle curve) and 8000 bar (lower curve).

values of AV, It is interesting to note that a cross-over from positive to negative molar
volumes on the salt-rich side was in fact reported in preliminary measurements [10]. This
was not confirmed by subsequent experiments of the same authors [6], although their error
bars (roughly AVy,/Vm = 1%) do not completely rule out such a behaviour. It should also
be noted that with the choice of sp = 0.792 Ryd for the scale factor of the surface energy,
the maximum excess molar volume is about 3 cm®, which is roughly a factor two larger
than the experimental values. This is probably again a consequence of the zero-temperature
nature of the calculation.

The present model could be refined in many ways. Thermal expansion effects could
be included, at least at a mean field level. Polarization of the electron density inside the
cation WS spheres could be described within a simple density functional formulation. More
importantly, a more accurate treatment of the surface energy, beyond the rescaled ansatz in
(21), would be desirable, since the molar volume is very sensitive to this energy. Finally
localized electron states, like F centres, could also be accommodated in the present model
by introducing a third category of WS cells containing no ion. However, such refinements
would necessarily spoil the simplicity of the present calculation, which already leads to
the desired qualitative result, namely a positive excess volume of the right magnitude in
contrast to a linear screening description.
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