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Using a novel scheme to compute the chemical potential of semiflexible polymers, we have
measured the confinement free energy of a wormlike chain in a tube. We compare our result
for the dependence of the free energy on the chain length, the persistence length and the
diameter of the cylinder with the corresponding theoretical predictions based on the scaling
theory of Odijk and the fluctuation theory of Helfrich. Our simulation data agree well with
the exponents of the theoretically predicted power laws. We find evidence that, for long
wavelengths, the mode damping assumption underlying Helfrich’s theory is valid.

1. Introduction

The wormlike chain, proposed by Kratky and Porod in 1949 [1], is an
idealized model for a semiflexible polymer. Wormlike chains have been tested
extensively for dilute solutions [2,3] and they proved to explain very well the
equilibrium properties, like the light scattering, small-angle X-ray and neutron
scattering data and the transport and dynamical properties, like sedimentation
coefficient and the intrinsic and dynamic viscosity. During the past decade, this
model has been used to model [4-8] liquid crystals, gels and semiflexible
polymers in confined geometries.

A key quantity in the theoretical description of confined wormlike chains is
the change in free energy associated with this confinement. In ref. [4], Odijk
has reviewed some of the theories that can be used to estimate the confinement
free energy of a wormlike chain [5-10]. Although at first sight, the theories due
to Khokhlov and Semenov [7,8], Helfrich [6,9,10] and Odijk [4,5] seem rather
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different, they all lead to similar predictions for the confinement free energy.
Nevertheless, many of the basic concepts in the theory of wormlike chains have
never been tested directly and it would be interesting to test some of these
assumptions in the theoretical description of the wormlike chains by computer
simulations. However, numerical simulations of wormlike chains are difficult
with the existing Monte Carlo schemes.

In this paper we report a novel computational approach to this problem
based on the configurational-bias Monte Carlo method [11]. In section 2, we
will briefly discuss the scaling theory of Odijk [4,5] and Helfrich’s theory,
based on a rather ad hoc assumption, for a semiflexible polymer in a tube. In
section 3, our choice of simulation technique is explained and the results are
discussed in section 4. The computational scheme is discussed in detail in the
appendix.

2. Theory of semiflexible polymers

In what follows, we use the notation of Odijk [4,5]. We consider an infinitely
thin polymer with contour length L and persistence length P and L > P. The
bending free energy of this polymer can be written as follows:

L
dzrx 2 er 2
Fb:%C!ds[<dsz> +(F;)] 0

where we decompose the displacements of the polymer into two independent
directions, r, and r,. The persistence length P is related to the bending elastic
modulus C,

c
P=t7 )

To compute the confinement free energy of a stiff chain in a long cylindrical
‘pore of diameter D, Odijk [4,5] has introduced a very useful concept, namely
the deflection length. This length scale A corresponds to the average distance
between successive deflection points of the chain in the pore. In ref. [4] it is
shown that the theories of refs. [5-8] all yield qualitatively the same expression
for the confinement free energy AF,,

AF, L
kyT A )

Eq. (3) can be made plausible by a scaling argument [4,5]. An extensive
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quantity like the free energy must scale like k5 T times the chain length divided
by the only other relevant length scale. As the chain loses its angular
correlations through these deflections, this relevant length scale is no longer
the persistence length P, but the deflection length A. Thus we arrive at eq. (3).
For the deflection length of a stiff chain in a long cylindrical pore of diameter
D, the following expression can be derived [5,12]:

/\~P1/3D2/3. (4)

Inserting eq. (4) in eq. (3), we obtain

AF, L

c

kT = ¢ pinps 3

for P> A and where ¢ is a dimensionless prefactor.

Helfrich’s line of reasoning is quite different and is based on the so-called
undulation force [6] due to the confinement of the polymer. If we introduce a
Fourier expansion of the displacements of the polymer:

r=2 a,e",  j=xy, (6)
e

the mean-square amplitudes (a;)fme for one direction for a free polymer can
be deduced from eq. (1) and the equipartition theorem,

%CLq4<a%1>free: %kBT (7)

If we now put the polymer in a tube the fluctuations of the polymer will be
partly suppressed. Helfrich [6] assumes that all Fourier modes will be sup-
pressed by the same amount,

1 1

= +7T
<a31 > restr < af; >free ’

where the subscript restr refers to the restricted polymer. The mean-square
displacement of the confined polymer for one direction can be calculated from

(®)

()= 3 () ©)

On the other hand the mean square displacement must be of the order of the
square of the diameter of the tube,
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Eliminating (r”) between egs. (9) and (10) and using eq. (8) will lead to

T 1

7~ 4 PpFps (11)
The confinement free energy can now be calculated with the help of a plausible
expression for the associated change in free energy of a single mode AF, [9]
and by integration over all ¢ modes and the two independent directions,

AF. L |
tr- 5 | lgR@ ., (12)
with
2
a
R(g) = i@ (13)

<az>free .

. This leads again to eq. (5) for the confinement free energy. It is interesting to
note that, unlike the scaling approach, Helfrich’s theory leads to a prediction
for the prefactor ¢ = p "> Eq. (12) shows that the ratio of the mean square
amplitudes for the confined chain and the free polymer is directly correlated to
the confinement free energy and it is therefore interesting to investigate this
quantity in more detail. Using eqs. (7) and (8), we can rewrite this quantity as

follows:

4

q
R S 14
(D eitrich 614 n fj4 > (14)
with
1/4
- T 1
q= (PL) = 41/4M1/302/3P1/3 (15)

and we see that g scales with the reciprocal of the deflection length A with a
prefactor

¢, :2—1/2’u—1/3 ‘ (16)

We see that in this specific case, R(¢g) is a universal function of g/4 or gA as
predicted on general grounds by Odijk [13]. The aim of the simulations
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reported below is twofold. First, we test the scaling relations of the confine-
ment free energy and we compute the prefactor. In the second place, we want
to test Helfrich’s assumption concerning the suppression of the Fourier modes
of the polymer conformations and we want to investigate the scaling behaviour
of these Fourier spectra by testing if R(q) is indeed a universal function of g/4.

3. Simulation method

Our aim is to compute the increase of free energy of a semiflexible chain,
due to the confinement imposed by the tube. The confinement free energy can
be expressed in terms of the partition function of the confined chain and of the
ideal chain, Z and Z' respectively,

AF, = ~—kBT10g<%) . (17)

The ideal chain is our reference state, i.e. a chain that is not confined in a
cylinder. The ideal chain will have an internal potential energy that is equal to
the sum of the bending energies of the individual joints. The bending energy
for a joint between segments { — 1 and i of a polymer with conformation I, is

”iwdi_lwi = C’(ow,._lw,.)z ’ (18)

where 6, , is the angle between the unit vectors w;_, and %, that specify
respectively the orientations of the segments i —1 and i. If we compare eq.
(18) with the expressions for the bending energy per unit length of a continu-
ous, semiflexible polymer (eq. (1)), we get

C

C'=5,

(19)
where [ is the segment length. In what follows, we shall choose [ to be our unit
of length.

Monte Carlo simulations can be used to measure ensemble averages like
(A), but cannot be used to compute the partition function directly. Thus, it is
impossible to compute the confinement free energy by computing the partition
function of the confined chain and of the ideal chain separately. Special
techniques are required to compute free energies. Fortunately, the ratio of the
two partition functions in eq. (17) can be rewritten as an ensemble average,
similar to the so-called ‘‘particle-insertion method” of Widom [14]. The
expression for the confinement free energy then becomes
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L L
I1dw, exp[—B > (ui‘fj_lﬁi + ufzf’”)]
i=1 !

i=1

AF. =—k,T log B
JH dw, exp[—B > uiwd,.;lw,.]
i=1 i=1
L
=—k,T log<exp<—B > u:}”_“” >> . (20)
i=1

A naive way to simulate a wormlike chain would be to generate a very large
number of completely random conformations of the freely jointed chain and
compute the Boltzmann weight of the resulting conformation (fig. 1a). The
problem with this approach is that the overwhelming majority of randomly
generated conformations correspond to wormlike chains with a very high
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most trial segments hit the wall
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cut here regrow here

With extra bias
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Fig. 1. Possible schemes to generate conformations of a wormlike chain. (a) Generating random
conformations of a freely jointed chain. (b) Generating subsequent segments according to a
probability distribution given by the intramolecular bending energy. (c) Configurational bias:
generate several trial segments following scheme b and select one trial segment that has no overlap
with the tube. (d) As in ¢, but with an additional bias that forces the chain to approach the tube
wall approximately tangentially.
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internal energy and probably with a very high external energy (and therefore a
very small Boltzmann weight). Hence the statistical accuracy of this sampling
scheme will be poor.

To alleviate the problem of high internal energies, we could sample the
internal angles in the chain in such a way that the probability of finding a given
angle is given by the internal Boltzmann weight (Fig. 1b). For every conforma-
tion thus generated, we compute the Boltzmann factor that corresponds to the
interaction of the polymer with the hard wall of the cylinder. Thus, overlap of
the polymer with the wall will give a Boltzmann factor equal to zero and no
overlap will give one for the Boltzmann factor. With the average of these
Boltzmann factors we can compute the confinement free energy.

This second approach is obviously superior to the first scheme. However, in
many practical situations it will still yield poor statistics, because most ideal
chain conformations will still not correspond to energetically favourable situa-
tions for the confined chain, as most chains will have overlap with the tube.
Hence the Boltzmann weights will, again, be zero for the majority of con-
formations and the statistical accuracy will not be very good.

The problem with both schemes described above, is that neither allows us to
focus on those conformations that should contribute most to Z, namely the
ones for which both the internal and external potential energy are not much
larger than a few kT per degree of freedom. As the external energy is either
zero for no overlap or infinity for overlap of the polymer with the hard wall,
only non-overlapping conformations will contribute to Z. It would clearly be
desirable to bias the sampling towards such favourable conformations.

One solution to this problem is to use the “configurational-bias Monte
Carlo” sampling scheme for continuously deformable molecules [11,15]. In this
scheme, the construction of chain conformations proceeds segment by seg-
ment. To add a segment, we generate a fixed number of trial segments,
calculate for each trial segment the Boltzmann factor associated with the
interaction with the wall and select the new segment with a probability
proportional to that Boltzmann factor. Thus we will never choose a segment
that has overlap with the tube, as this probability is equal to zero (fig. 1c). If
we have grown a whole polymer, we cut the chain at a random position,
regrow part of the chain at one or the other end and accept the new
conformation with a certain probability, that is given in the appendix and is
based on the condition of detailed balance. The advantage of this scheme is
that we can rapidly generate, large conformational changes and a conformation
that hits the wall will immediately be rejected.

Nevertheless, the problem remains that when the polymer is grown or
regrown, there is still a large probability that the polymer will encounter the
wall under a large angle, as the width of the orientational distribution of the
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polymer after € steps is equal to £(0”) with (#°) the width of the orientational
distribution after one step. Because the trial segments are generated according
to the internal Boltzmann factors, all trial segments will probably hit the wall
and no trial segment will make such a large turn, that the polymer can go from
the wall, or if it does, it will do so in a conformation with a high internal energy
and therefore a small statistical weight. As a consequence, the statistical
accuracy of this sampling scheme will be poor. We therefore introduced an
extra bias into our computational scheme and the polymer will now be guided
smoothly to and from the wall of the cylinder (fig. 1d). The trial segments will
now not be generated according to the Boltzmann factors of the internal
energy, but distributed around a new unit vector ¥, that denotes the “bias”
direction for the new segment. This vector & depends on the radial distance of
the segment to the axis of the cylinder and on the orientation of the (i — 1)th
segment. Of course, in our Monte Carlo sampling we should correct for this
bias. In the appendix this computational scheme is described in detail.

4. Results and discussion

As it is our aim to test the dependence of the confinement free energy of
wormlike chains on the parameters characterising the chain and the confining
tube, simulations were carried out on chains with lengths between 10 and 700
segments and with persistence lengths of 15 to 60 segments in tubes with
diameters of 0.3 to 1.0. The parameters characterising the various simulations
that we have performed have been collected in table I. Fig. 2 shows a plot of
the confinement free energy per segment versus the number of segments of the

Table I

Parameters characterising the simulations of a polymer in a
tube. The table shows the values for the length of the
polymer L, for the persistence length P and for the diameter
of the cylinder used in our simulations. The first column
refers to the number of the figure. If one single value is
shown in the table, we kept that parameter fixed at that
value, otherwise the range is shown, wherein the value of
that parameter is varied.

Fig. L D P

2 10-700 0.80 60.00
3 500 0.30-1.00 60.00
4 500 0.60 15.00-60.00
5 512 0.60 60.00
6 512 0.60 60.00
7 512 0.40-1.00 60.00
8 512 0.60 20.00-60.00
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Fig. 2. A plot of the confinement free energy per segment of a polymer of length L =500 and
persistence length P =60 in a tube with diameter D = 0.80, versus the number of segments of the
polymer.

polymer. In order to estimate the statistical error of the confinement free
energy, 40 independent simulations were performed. In each simulation we
regrew the polymer 100 times. The confinement free energy per segment is
found to approach a constant value for L > P, as expected, because the total
free energy of the chain is an extensive quantity. In what follows, we shall
always discuss simulations of wormlike chains with L > P.

The dependence of the free energy on the diameter of the cylinder and on
the persistence length is shown respectively in figs. 3 and 4. The free energy is
found to scale with the diameter of the cylinder as AF,~ D where a=
—0.66+0.07 and with the persistence length P as AF,/k,T~ P’, where
b =—0.31+0.05. This should be compared with the value a= —% and b = —}
predicted by the theory of refs. [4-8]. Thus our data are consistent with the
scaling relations theoretically predicted.

Let us next consider if we can gain a better physical understanding of the
scaling behaviour of the confinement free energy. Clearly, the physical origin
of the confinement free energy is the suppression of chain fluctuations.
Specifically Helfrich’s theory is based on the argument that the scaling be-
haviour is a result of the constant suppressions of all Fourier modes of the
chain fluctuations. Our simulations allow us to test this prediction in detail. In
fig. 5 the difference of 1/ (afl) between the confined wormlike chain and the
free polymer is shown as a function of g. For small g the difference appears to
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Fig. 3. A plot of the confinement free energy per segment of a polymer of length L =500 and
persistence length P = 60 in a tube, versus the diameter D of the tube.
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Fig. 4. A plot of the confinement free energy per segment of a polymer of length L = 500 in a tube
with diameter D = 0.60, versus the persistence length P of the polymer.
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Fig. 5. A plot of 7=1/{a}) ., — 1/((12)frcc of a polymer with length L =512 and persistence
length P =60 in a tube with diameter D = 0.60 as a function of g. The inset shows a magnification
of the low-q region, where the dash-dot line (——) denotes the value of 7 based on Helfrich’s
theory (for details see text).

be constant in agreement with eq. (8). However, we also observe, somewhat
surprisingly, that the high-¢ Fourier modes of the confined chain are enhanced
with respect to the free chain. For a confined continuous wormlike chain one
can show that R(q)=1 (ref. [16]). It therefore seems likely that the enhance-
ment of the high-g modes we observe is caused by the rather small values for
the diameter D used in the simulations. In any event, as we shall argue below,
the confinement free energy is completely dominated by the low-g chain
fluctuations that are suppressed rather than enhanced. If we magnify the plot
of 1/<a3> versus ¢ in the low-g region, also shown in fig. 5, we see that the
suppression of the Fourier modes varies by some 20% for 0= g =<0.13. This
variation is not accounted for by the Helfrich theory. We expect that the fact
that the suppression of the low-g Fourier modes is not completely constant,
will affect the quantitative prediction of the Helfrich theory, but not the scaling
behaviour.

Let us now test Helfrich’s prediction for the amplitude of the low-q Fourier
modes, i.e. 7 in eq. (11). In order to compute 7, we must know the
mean-square displacement of a polymer in a tube. (u in eq. (10)). Helfrich
gives the estimate u = 1/24. However, we can “measure” w in our simulations.
We find p = 0.073 £ 0.001. If we insert this value of w in eq. {11), we find that
r=4.18+0.08 X 10°. As can be seen from the magnified part of fig. 5, this
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value of 7 is indeed within the range found in our simulations. We note that if,
in contrast, we would have used Helfrich’s estimate p = 1/24, we would have
seriously overestimated the value of 7 (viz. 7= 8.84 x 10°).

Helfrich’s theory also gives a prediction for the prefactor in eq. (5), namely
c=upn " In figs. 2 and 3 the prefactor is ¢ =2.46 £0.07. With u =0.073 =
0.001, we find ¢=2.39+0.01. The actual value for ¢ agrees within the
statistical error with this value and turns out to be slightly lower than the value,
obtained by using the value pu =1/24.

In order to investigate the scaling behaviour of the suppressions of these
Fourier spectra, we compute the ratio R(g) of the mean square amplitudes of
the restricted chain and the free polymer for several values for the diameter of
the tube and the persistence length. An example of the g-dependence of R(q)
is shown in fig. 6. As before we see the strong suppression of low-g Fourier
modes of the chain fluctuations and an enhancement of the high-g modes.
Odijk predicts that R(g) becomes a universal function of ¢/g [13] and
according to Helfrich R(¢) has the following functional form: R(q)yeerich = 4/
(¢* + ") (eq. (14)). Below, we shall test this form of R(gq). First, we simply
assume that R is an, as yet unspecified, universal function of g/g. We can then
measure the dependence of ¢ on D and P in the following way. We determine
the value of g for which R(¢) has a given value. As R is a universal function of
q/q, a fixed value of R corresponds to a fixed value of ¢/4, say x. If we now
measure how this specific value of g depends on D and P, we immediately

5.00
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Fig. 6. A plot of the ratio of the mean-square amplitudes of the confined and the free chain as a
function of ¢, with D =0.60 and P = 60.
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determine the dependence of ¢ = g/x on D and P. Following this procedure,
we found that g scales with the diameter of the cylinder as ¢ ~ D!, where
a,=—0.69+0.06 and with the persistence length P as §~ P”!, where b, =
—0.37 = 0.04. This should be compared with the value a, = —% and b, = —3
predicted by Helfrich’s theory [6,9,10].

In order to determine the prefactor ¢, in eq. (16), we have fitted our Fourier
spectra with the function R(q) = q*(q*+ ¢*), where G = ¢,/D*’P'". If we
plot R(q) versus g/q, we should expect that this curve is the same for all D and
P. However, figs. 7 and 8 (magnification of fig. 7) show that this is only valid
for q/q <0.15. We find the best fits using ¢, = 1.75 = 0.01, which should be
compared with the value ¢, = 1.69 £ 0.01 using the value for u =0.073 = 0.001
that follows from the simulations. The value for the prefactor, obtained by
using u = 1/24 yields an overestimate for ¢,. In order to show the accuracy of
our fits and the agreement with Helfrich’s assumption, we show R(gq)/
Riuairien () versus g/q in fig. 9. We find that, depending on P and D, this ratio
may deviate some 30% from the value 1, for ¢/§ <0.3. Like the observed
enhancement rather than suppression for the high-g modes it seems likely that
the deviation from scaling behaviour for the high-g modes is also caused by the
rather small values for the tube diameter D used in the simulations. Some
support for this assumption can be obtained from the representation in the data
in fig. 7, where it appears that the enhancement decreases with increasing D.

5.00 ,

R(q)

0.00 L
0 5
a/q
Fig. 7. A plot of the ratio of the mean-square amplitudes of the confined and the free chain as a

function of ¢/q with the following values for respectively D and P: (a) 1.00, 60; (b) 0.80, 60; (c)
0.70, 60; (d) 0.60, 60; (e) 0.50, 60; (f) 0.60, 40; (g) 0.60, 30; (h) 0.40, 60; (i) 0.60, 20.

10
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Fig. 8. A plot of the ratio of the mean-square amplitudes of the confined and the free chain as a
function of g/ (magnification of fig. 7).

In summary, our simulations of the excess free energy of a wormlike chain
confined in a tube appear to be in quantitative agreement with the scaling
behaviour predicted by the theories of Helfrich, Khokhlov and Semenov and
Odijk [4-8]. In addition, we find that the theory of Helfrich yields a prediction
both for the absolute confinement free energy and the suppression of the long

1.50 T ; T N
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Y
£ % 0
Bl 8 3 ¢
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S 2 © . ® 4
Gl R A O _
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PN .
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0.50 L 1 L
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Fig. 9. A plot of the ratio of the mean-square amplitudes of the confined and the free chain
divided by the ratio predicted by Helfrich as a function of g/q with the following values for
respectively D and P, open diamond: 1.00, 60; cross: 0.80, 60; solid diamond: 0.70, 60; solid
square: 0.60, 60; open triangle: 0.50, 60; open circle: 0.60, 40; open hexagon: 0.60, 30; dot: 0.40,
60; solid triangle: 0.60, 20.
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wavelength modes, that is in good, but not perfect, agreement with our
simulations.
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Appendix

To compute the confinement free energy of a wormlike chain in a tube, we
apply the following “recipe” to construct a conformation of a chain of L
segments. The construction of chain conformations proceeds segment by
segment. Let us consider the addition of one such segment. To be specific, let
us assume that we have already grown i — 1 segments, and that we are trying to
add segment i. This is done as follows:

1. Generate a fixed number (say k) trial segments. The orientations of the
trial segments are distributed according to the internal Boltzmann weight

;di_lﬁj =exp[— ,Bui;i_l@j] associated with the internal bending energy times a
weight function,

Paw,.
&= pa > 2D
with
o 2
P”wj B exp| ﬁc(rxy) (oﬁwj) I (22)

where r_, is the radial distance of the previous segment to the axis of the tube
and where 054, 1s the angle between the unit vectors w; and § that denote
respectively the orientation of the jth trial segment and the bias orientation, as
yet unspecified, for the 7/th segment. The unit vector & depends on the unit
vector that specifies the orientation of the previous segment w,_; and on the
radial distance of the previous segment to the axis of the cylinder. The
normalisation constant B is equal to | dw Py . [he bending constant C(r,,) is
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also dependent on the radial distance of the previous segment to the axis of the
cylinder,

C

C - -
() =12 (2r, /DY

For the bias direction, we took the following boundary conditions:

é, ifr,=D/2,
o(W,_y,1,) = é, itw,_,-é,=0, (23)
W, ifr,, =0,

with é, along the axis of the cylinder. An equation for the bias direction of
segments / that satisfies these conditions is

v(wt 1> xy)
O\W,_,71,, N (24)
( ! }) |v(wi*17 rxy)l
where v(W,_,, r,,) is equal to
U(Wl 1 xy) ( D’—rxy)(wt 1 e )wl 1+rxy(1_w l.éz)éz' (25)

We denote the different trial segment by indices 1, 2,..., k. Now the
probability to generate a given subset {#}, of k trial segments with orientations
w, through w, is equal to

§>

1 £ 1
PM—B—I:[ dv, Py, 8= ng  Pay, (26)

2. For all k trial segments, we compute the “external”” Boltzmann factor
exp(— Buwa“) where uwlall is the potential energy of the jth trial segment of the
polymer with conformation I ., due to interaction with the wall of the cylinder.
3. Select one of the trial segments, say w;, with a probability
wall

w; Z{W}'_ >

(27)

where we have defined

= g exp(— Buwa“) .
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The subscript {w}, means that W, is one of the segments of the subset, so
w, € {Ww}.

4. Add this segment as segment i to the chain and store the corresponding
partial “Rosenbluth weight” [11]:

w; = Z gy 1k (28)
and the weight-factor g, (Eq. (21)).

The desired ratio Z/Z™ is then equal to the average value (over many trial
chains) of the product of the partial Rosenbluth weight times the reciprocal
partial weight factor divided by the average value of the product of the
reciprocal partial weight factors:

o), (29)

where the angular brackets with the subscript g denote and average over the
sampling distribution P,, and not the distribution P _»,- This is similar to the
Umbrella Sampling [17] where the desired average will be obtained by a
biased sampling. The advantage of this scheme is that step 3 biases the
sampling towards energetically favourable conformations.

However, it still remains to be shown that eq. (29) is, in fact, correct. To this
end let us consider the probability with which we generate a given chain
conformation. This probability is the product of a number of factors. Let us
first consider these factors for one segment, and then later extend the result to
the complete chain.

We wish to compute the average of w;, over all possible sets of trial segments
and all possible choices of the segment. To this end, we must sum over all w; in
a set and integrate over all orientations H',;l diw; to get all possible sets of trial
segments,

wall -
(o8 fP{w} 2 oo

<gi >g —1
IP(W}igi

In the numerator the summation over the external Boltzmann factors Z o in
the probability to select a trial segment (Pwa“) will cancel the summation in the

() = (30)
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Rosenbluth factor w;,

() = (jjli d, Pﬁﬁié ?B(:—fu—zfn) g’_1><fllj[1 ¥, Pi;i 1‘°i>_1 SCD)

As the labeling of the trial segments in eq. (31) is arbitrary, all & terms yield
the same contribution. We now arrive at

Py s, exp(—Buy™)
(@-):k[dﬁi (Pwi Pwl - )
T i =t . . -1
x| I1 aw, Py o [T aw, P . |dw, P9 ) .
et T j=i i T R e

The integrals over the k — 1 orientations in the numerator will cancel the k — 1
integrals in the denominator. Thus the final equation is

[ ab expl-pt o+ us™ 4
_ S 4 (32)

<“’i>

J’ dw, eXp(—Bufi_lwl_)

The subscript in eq. (32) denotes that this expression holds for the ith segment.
The extension to a polymer of L segments is similar. Note that with this
scheme Z,/Z)® is equal to one, when the cylinder is taken away, so when

wall

u,  =0. It is not necessary to sample over a large distribution; the correct
answer is immediately obtained.
For the configurational bias method, we used the detailed balance condition

[11] in the Metropolis form,

P,/exp(—B Ua)>

" Py/exp(=BU,) (33)

acc(a|b) = min<1

where P, and P, are respectively the probabilities that the chain is in
conformation a and b. If we now impose the “super-detailed” balance condi-
tion, we have to consider the probability of generating a new chain via one
particular choice of trial directions {#w}; and of choosing a set of trial directions
{w'}, from all possible sets that contains the old configuration. The probability
of generating a new chain of L segments via the set {#}, and of choosing the
set {w’}, will now be equal to the probability to generate the old set of trial
directions {%'}, excluding the old orientation (denoted by P, , where
{rest’} denotes the set of k—1 orientations of {%'}, excluding the old
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orientation) times the probability to generate a new set of trial directions {w},
that contains the new orientation (i.e. P, ) times the probability to select this
new orientation (i.e. exp(— Buwa”)/Z{w}i)

exp(—Buy™")

L
P,= Ul Py Pleeary, ————Z{ - , (34)

where P, will be given by eq. (26). U, =L, uj, + u;™" and the Rosenbluth
factor is equal to

ﬁ Wk (35)

We now arrive at

P L IS Pld TES
H< tresty P ow Prest, ) (36)
exp(—BU,) BPY ka

zlw

Substitution of eq. (36) in eq. (33) gives

acc(alb) = min(1, W, G, ' I1W,G,"), (37)
with
L
G,=11g,. (38)
i=1

In words, the configurational bias Monte Carlo (CBMC) scheme works as
follows:

1. Generate a trial conformation by using the Rosenbluth scheme (i.e. eq.
(34)) to regrow the entire molecule, or part thereof.
2. Compute the Rosenbluth weights times the weight functions,
WoaGoa and W eeialG et »
of the trial conformation and of the old conformation.
3. Accept the trial move with a probability
min(1, W, G,

trial > trial

/WoldG(:lfi
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