EUROPHYSICS LETTERS : 1 January 1992
Europhys. Lett., 17 (1), pp. 39-43 (1992) published in November 1991

Velocity Autocorrelation Function in a Four-Dimensional
Lattice Gas.

M. A. vaN DER HOEF, M. DIJKSTRA and D. FRENKEL

F.O.M.-Institute for Atomic and Molecular Physics
Kruislaon 407, 1098 SJ Amsterdam, The Netherlands

(received 22 July 1991; accepted 23 September 1991)

PACS. 61.20J — Computer simulation of static and dynamic behaviour.
PACS. 05.40 — Fluctuation phenomena, random processes, and Brownian motion.
PACS. 05.60 — Transport processes: theory.

Abstract. — We report simulations of the velocity autocorrelation function (VACF) of a tagged
particle in a four-dimensional lattice gas cellular automaton (LGCA). We observe a hydrody-
namic tail in the VACF, which decays as ¢7%, in agreement with the theoretical predictions.
However, in a quantitative comparison, the simulations show that mode-coupling theory
underestimates the amplitude of the hydrodynamic tail by (15 +60)%. The artificial correlations,
previously observed in the projected three-dimensional lattice gas model, are found to be absent
in this truly 4D model.

The appearance of hydrodynamic long-time tails in the velocity autocorrelation function
(VACF) of a tagged particle in a classical fluid [1] is a phenomenon that is well understood.
The physical origin of this long-time tail is that the initial motion of the tagged particle
induces a flow field in the fluid, which in turn is responsible for correlations at longer times.
A simple dimensional argument[1] indicates that the long-time tail related to such
correlations should decay algebraically as t%Z, where d is the dimension of the model-system
under consideration (d > 1). This prediction is in agreement with observations in molecular
dynamics (MD) simulations of two- and three-dimensional systems[1-4]. A more complete
description of this long-time tail is given by mode-coupling theory, which takes into account
the slow decay of the hydrodynamic modes in the fluid [5], and also by a version of kinetic
theory that accounts for the effects of ring collisions [6]. The predictions of these theories
are in reasonable agreement with the simulation results mentioned earlier, although such a
quantitative comparison proved to be difficult as MD-simulations of long-time tails in three
dimensions are extremely time-consuming, and the study of the same phenomenon in four
dimensions (4D) is virtually impossible. However, there exists an interesting alternative to
molecular dynamics simulations in which the VACF can be measured with extremely high
accuracy, namely the study of lattice gas cellular automata (LGCA). LGCA were introduced
in 1985 by Frisch et al. [7, 8] and can be viewed as molecular dynamics in discrete space and
time, or in other words, models in which particles are constrained to move on a lattice.
Moreover, particles can only have a few different velocities. As explained in ref. [9], the
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VACF can be computed very efficiently in such a system. The simulation results of the
VACF in two- and three-dimensional LGCA’s have been found to be in essentially
quantitative agreement with the prediction of mode-coupling theory[10-14]. The main
objective of the present letter is to verify the existence of an algebraic long-time tail in a
four-dimensional model fluid and to compare the simulations with the predictions of the
corresponding mode-coupling theory. In addition, the present simulations also allow us to
gain some more insight into the model that is generally used in three-dimensional lattice gas
simulations [15,16]. This is so because this three-dimensional model is actually a projection
of the four-dimensional model that is under study in the present letter. The reason why a
projected four-dimensional lattice gas is used as a model of a three-dimensional fluid is that
there exists no three-dimensional lattice with high enough symmetry to ensure macroscopic
isotropy of the equations of motion. One consequence of this projection is that spurious
correlations exist in the velocities of different particles. In particular, due to the projection
of the 4D lattice, two particles can recollide without colliding with any other particle. These
peculiar recollisions manifest themselves in the VACF at short times. The effect is most
striking for correlations after two time steps. At that time, recollisions have not yet taken
place and hence the VACF of an unprojected model would show Boltzmann behaviour. In
contrast, the VACF of the projected model shows deviation from Boltzmann behaviour at
two time steps, which has indeed been observed in the simulation results of a three-
dimensional lattice gas [12]. One of our objectives in the present letter is to show that these
spurious correlations are absent in a truly four-dimensional simulation.

The particular model that we have used is defined on a four-dimensional face-centred
hyper-cubic (FCHC) lattice, and is usually referred to as the FCHC-model. For the 4D
FCHC-model, mode-coupling theory [11, 14] predicts that the long-time tail of the normal-
ized VACF of a tagged particle is of the following form:
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where fis the density, defined as the average number of particles per link (0=<f=<1). D and v
are the diffusion coefficient and the kinematic viscosity, respectively. Equation (1) defines
dy, the amplitude of the hydrodynamic tail. In the Boltzmann approximation, D and v can be
calculated explicitly as a function of f. The result for the projected 3D model and the
nonprojected 4D model are equivalent, and can be found in ref. [11]. In principle, one should
use the true values for D and v, including the non-Boltzmann contributions. In the studies of
three-dimensional lattice gas fiuids [11,12] it has been demonstrated that the latter
contributions to the transport coefficients are negligible, as they are less than 1% of the
Boltzmann value. It therefore seems justified, in the present comparison, to use the
Boltzmann values for D and v. Indeed, our results for the 4D VACF confirm that the non-
Boltzmann corrections to D are very small. Our neglect of non-Boltzmann contributions to v
is less well founded, as the stress correlation function cannot be caleulated with sufficient
high accuracy. Nevertheless, we have numerical evidence that the stress correlation
function of a 4D FCHC lattice gas is, to a very good approximation, exponential. This
suggests that, unless the decay of the nonexponential part of the stress correlation function
is anomalously slow, the non-Boltzmann contributions to the viscosity are not large enough
to account for the quantitative disagreement between theory and simulation reported
below.

The simulations were performed on lattices of 30* lattice sites. The time intervals over
which the VACF was measured were in all cases less than the shortest time in which a
particle can cross the periodic box. There remains a finite-size effect related to the finite
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Fig. 1. — Velocity autocorrelation function multiplied by ¢ in a four-dimensional lattice gas. The
functions are shown for different densities f, defined as the average number of particle per link. Note
that in all cases we observe the expected ¢~2 long-time decay.

number of particles, described extensively in ref. [17]. As discussed in[17], it is straight-
forward to correct for this finite-size effect. Simulations were performed for different
densities varying from f= 0.45 to f = 0.90. The specific method used to calculate the VACF
was the moment propagation method deseribed elsewhere [9, 10]. In what follows we always
consider the VACF normalized to one at ¢ =0. In fig. 1 we show the VACF obtained from
the simulations, multiplied with ¢2, as a function of time. If the VACF decays as t72, these
curves should approach a constant value, as is indeed observed. The values of these plateaus -
directly represent the tail amplitude d,, and can be compared with the theoretical
prediction. This comparison is shown in fig. 2, where we divided d,, as obtained from the
simulation, by the corresponding theoretical prediction, as a function of f. As can be seen
from fig. 2, we find rather large deviations from the theoretical predictions. The theory
understimates the amplitude of the long-time tail by some 15% for densities lower than 0.8.
For density 0.9 the deviation is about 60%. At present we have no explanation for this
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Fig. 2. — Amplitude of the long-time tails (see fig. 1) divided by the theoretical prediction (eq. (1)), as a
funetion of density. Note that at the highest density the deviations from theory amount to 70%.
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Fig. 3. — Initial decay of the VACF for one particular density (f=0.8) in the 3D and the 4D lattice gas,
on a log-linear scale. The simulation data are represented by the «plus» markers (4D model) and the
squares (3D model). The error bars on the data points are at least ten times smaller than the size of the
markers. The solid line is the prediction in the Boltzmann approximation, for both models, and
represent true exponential decay. Note that in the projected 3D model there is deviation from
«Boltzmann» after two time steps, which is not found in the true 4D model.

quantitative disagreement. In fig. 3 we show the initial decay of the function on a log-linear
scale, for one particular density (f=0.8). In this figure the solid line represents the exact

- Boltzmann prediction which decays exponentially. The markers indicate the simulation
results in the 4D model (pluses), and in the quasi-3D model (squares). We see exponential
decay for the 4D model up to 2 time steps, as expected. For the 3D model there is a deviation
from Boltzmann-like behaviour one time step earlier. This deviation has been calculated
theoretically by Brito and Ernst [18], and was found to be in excellent agreement with our
observations. In conclusion, we have observed the hydrodynamic ¢~2-tail in the 4D VACF.
However, there is a surprising quantitative disagreement between the simulation results
and the prediction of mode-coupling theory for the asymptotic tail. As discussed earlier, the
use of Boltzmann transport coefficients instead of the true Green-Kubo integrands cannot be
the cause of this large discrepancy. There are two possible causes remaining. The first is
that the usual version of mode-coupling theory is not applicable to 4D fluids in general,
which seems rather unlikely. Alternatively, the discrepancy is caused by a peculiarity of the
lattice gas model itself. In this context it is natural to think of the many spurious invariants
of the 4D FCHC model [19] that may couple to the hydrodynamic modes, and seriously alter
the prediction of mode-coupling theory.
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