Induced Disease Resistance Signaling in Plants

Bas W.M. Verhagen • L.C. Van Loon • Corné M.J. Pieterse

Section Phytopathology, Institute of Environmental Biology, Utrecht Science Faculty, Utrecht University, P.O. Box 800.84, 3508 TB Utrecht, The Netherlands

Corresponding author: *C.M.J.Pieterse@bio.uu.nl

Keywords: defense signaling, ethylene, jasmonic acid, Pseudomonas fluorescens, salicylic acid, systemic acquired resistance

ABSTRACT

To protect themselves from disease, plants have evolved sophisticated inducible defense mechanisms in which the signal molecules salicylic acid, jasmonic acid and ethylene often play crucial roles. Elucidation of signaling pathways controlling induced disease resistance is a major objective in research on plant-pathogen interactions. The capacity of a plant to develop a broad-spectrum, systemic acquired resistance (SAR) after primary infection with a necrotizing pathogen is well known and its signal transduction pathway extensively studied. Plants of which the roots have been colonized by specific strains of non-pathogenic fluorescent Pseudomonas spp. develop a phenotypically similar form of protection that is called rhizobacteria-mediated induced systemic resistance (ISR). In contrast to pathogen-induced SAR, which is regulated by salicylic acid, rhizobacteria-mediated induced systemic resistance is controlled by a signaling pathway in which the phytohormones jasmonic acid and ethylene play key roles. In the past decade, the model plant species Arabidopsis thaliana has been extensively explored to study the molecular basis of systemically induced resistance. Here we review the current knowledge on induced disease resistance signaling in plants.

1. PLANT DISEASE RESISTANCE

Non-host, basal and R-gene mediated resistance

Plants are sessile organisms, incapable of fleeing from possibly harmful organisms. In order to defend themselves against pathogen attack, plants possess a range of constitutive and inducible resistance mechanisms. The most effective type is non-host resistance. This non-host resistance is expressed when a plant comes into contact with a pathogen which is incapable of provoking any disease in this plant (Heath 2002). In the absence of non-host resistance, the plant is susceptible. However, even susceptible plants are capable of reacting in a way that may slow down growth of the pathogen. The presence of such basal resistance was evidenced in Arabidopsis by the isolation of enhanced disease resistance (eds) mutants. These mutants showed increased susceptibility to moderately virulent pathogens such as Pseudomonas syringae (Glazebrook et al. 1996, Rogers and Ausubel 1997). Basal resistance is often dependent on the action of one or more of the plant hormones jasmonic acid (JA), ethylene (ET) and salicylic acid (SA). Upon attack, the levels of these hormones are usually enhanced. Such enhancement depends on the attacker that is trying to invade the plant, and each of the hormones act in the resistance against a specific set of pathogens. For instance, basal resistance against the oomyceteous pathogen Hyaloperonospora parasitica or the viral pathogen turnip crinkle virus was reduced in Arabidopsis mutants affected in pathogen-induced biosynthesis of SA. In contrast, it was not reduced in mutants impaired in JA- or ET-signaling (Delaney et al. 1994, Thomma et al. 1998, Nawrath and Métraux 1999, Kachroo et al. 2000, Ton et al. 2002c). Conversely, JA- and ET-signaling mutants showed enhanced susceptibility to the fungal pathogens Alternaria brassicicola and Botrytis cinerea, whereas SA-signaling mutants did not (Thomma et al. 1998, Thomma et al. 1999). Furthermore, ET-insensitive tobacco and Arabidopsis plants have been shown to be more susceptible to a range of necrotizing pathogens, e.g. B. cinerea, Pythium spp. and Fusarium spp. (Geraats et al. 2002). Some pathogens are resisted by a SA-dependent mechanism, as well as JA- and ET-dependent mechanisms, e.g. Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) and Xanthomonas campestris pv. armoraciae (Delaney et al. 1994, Pieterse et al. 1998, Ton et al. 1998, Ellis et al. 2002, Ton et al. 2002b). Certain pathogens are resisted by the hormones acting sequentially, e.g. Xanthomonas campestris pv. vesicatoria in tomato (O’Donnell et al. 2003). In this interaction, JA, ET and SA are required in succession. These results clearly demonstrate the intertwining of several signal transduction pathways in basal resistance. Moreover, it shows that the roles of different hormones vary depending on the plant-pathogen interaction.

Within plant species, individuals can vary in their level of resistance to a certain pathogen, with some individuals being fully resistant. Such resistance can usually be described by a gene-for-gene relationship. A pathogen carrying a specific avirulence (Avr) gene is recognized only by a plant carrying a corresponding resistance (R) gene. In such an incompatible interaction, the pathogen usually triggers a rapid and local defense response that leads to a hypersensitive reaction. The hypersensitive reaction is often regarded as a form of programmed cell death that
is dependent on e.g., reactive oxygen species. The resulting small necrotic lesion is involved in preventing the pathogen from spreading any further (Dangl et al. 1996). Furthermore, deposition of anti-microbial compounds, strengthening of cell walls and expression of defense-related genes in the vicinity of the lesion all contribute to the restriction of the pathogen (Hammond-Kosack and Jones 1998). Non-host resistance, basal resistance and R-gene mediated resistance play an important role in the plant's innate immune response. The mechanisms involved in these types of disease resistance have been extensively reviewed (Slusarenko et al. 2000). This review focuses on induction, signaling and expression of systemically induced, broad-spectrum disease resistance.

2. INDUCED DISEASE RESISTANCE

2.1. Biological and chemical induction of disease resistance

During evolution plants have developed sophisticated defensive strategies to perceive pathogen attack and to translate this perception into an appropriate adaptive response. When under attack, a plant is capable of enhancing its resistance, and this condition is often referred to as induced, or acquired, resistance. Acquired disease resistance is thought to involve an enhancement of basal resistance (Van Loon 2000, Ton et al. 2002b). A classic example of biologically induced disease resistance is triggered after attack by a necrotizing pathogen (Ross 1961). This attack renders distant, uninfected plant parts more resistant towards a broad spectrum of virulent pathogens (Kuc 1982, Ryals et al. 1996, Sticher et al. 1997). The onset of this enhanced resistance, known as systemic acquired resistance (SAR), is accompanied by a local and systemic increase in SA levels (Malamy et al. 1990, Métraux et al. 1990). Subsequently, a large set of SAR genes, including genes encoding pathogenesis-related (PR) proteins, is up-regulated (Ward et al. 1991, Van Loon 1997, Van Loon and Van Strien 1999). These PR genes are often considered as marker genes for SAR expression. Several PR-proteins possess anti-microbial activity and are thought to contribute to the state of resistance attained. The PR proteins can accumulate to levels from 0.3 to 1% of the total protein content of the leaf (Lawton et al. 1995).

A large variety of chemicals have been shown to activate the SAR response. Benzothiadiazole (BTH), 2,6-dichloroisonicotinic acid (INA), and SA induce the same set of PR genes comparable to biologically-induced SAR (Ward et al. 1991, Uknes et al. 1992, Lawton et al. 1996). Using parsley cells as a model, SAR induction by the commercially available plant activator BION and the biological agent Mitsana, as well as a large group of related chemicals, was demonstrated (Siegrist et al. 1998).

A second, well-studied biologically-induced disease resistance occurs after root colonization by selected strains of non-pathogenic Pseudomonas spp. (Van Peer et al. 1991, Wei et al. 1991). This type of resistance is generally called rhizobacteria-induced systemic resistance (ISR, Pieterse et al. 1996, Van Loon et al. 1998). ISR has been demonstrated in different plant species against several pathogens under conditions where the rhizobacteria and the pathogen remained spatially separated (Van Loon et al. 1998, Pieterse et al. 2002). The expression of rhizobacteria-mediated ISR was shown to be independent of the presence of SA or enhanced PR-gene expression. Phenotypically, rhizobacteria-mediated ISR resembles pathogen-induced SAR. Although the terms SAR and ISR are synonymous (Hammerschmidt et al. 2001), for convenience we distinguish between pathogen- and rhizobacteria-induced resistance by using the term SAR for the pathogen-induced type and ISR for the rhizobacteria-induced type of resistance. The non-protein amino acid β-amino butyric acid (BABA) appears to have a different mode of action. Like ISR, it induces resistance without the expression of PR-genes (Cohen and Gisi 1994, Zimmerman et al. 2001). However, BABA can induce resistance to H. parasitica in Arabidopsis independent of SA, JA or ET, through a signaling pathway that requires abscisic acid (ABA) and involves priming for callose depositions (Ton and Mauch-Mani 2004, Ton et al. 2005). On the other hand, BABA-induced resistance against the bacterial pathogen Psl DC3000 and the fungal pathogen B. cinerea is SA dependent (Zimmerli et al. 2000, Zimmerman et al. 2001).

2.2. Systemic acquired resistance

After local infection by a necrotizing pathogen leading to an HR, the enhanced state of resistance extends systemically into the uninfected plant parts. During the onset of SAR, a locally altered transcriptional response precedes the hypersensitive reaction and a second wave of transcriptional reprogramming, not a virulent attack, marks the transition from basal to induced resistance (de Torres et al. 2003). The induction of SAR is accompanied by local and systemic accumulation of endogenous levels of the plant hormone SA, followed by PR-gene expression (Malamy et al. 1990, Métraux et al. 1990). The importance of the accumulation of SA for the expression of SAR was demonstrated by using transgenic NahG plants. These plants express the bacterial salicylate hydroxylase nahG gene, making them incapable of accumulating SA (Gaffney et al. 1993). NahG plants do not show a SAR response (Ryals et al. 1996). Exogenous application of SA, or one of its functional analogs BTH or INA, leads to the full expression of SAR. Likewise, SA production-deficient mutants sid1 (also called eds5) and sid2 (also known as eds16) do not show a SAR response after infection with a necrotizing pathogen (Fig. 1; Rogers and Ausubel 1997, Nawrath and Métraux, Wildermuth et al. 2001). These results indicate that SA is necessary and sufficient for the induction of SAR. In tobacco, up to 70% of the SA accumulating in non-infected leaves may originate from the infected leaves (Shulaev et al. 1995). The remaining SA is produced de novo in stems and petioles in response to a mobile signal (Smith-Becker et al. 1998). Even though SA is transported, grafting experiments between tobacco wild-type and NahG plants showed that SA is not the transported signal responsible for the systemic nature of SAR. However, SA is needed in non-infected tissues to effectively express SAR (Vernooij et al. 1994, Willits and Ryals 1998). As shown recently, ET perception is required to generate the systemic signal, but is not needed for the response to the systemic signal leading to SAR (Verberne et al. 2003). Instead, a putative apoplastic lipid transfer protein (DIR1) was characterized, which is thought to interact with a lipid-derived molecule to promote long distance signaling during SAR (Maldonado et al. 2002).

Transduction of the SA signal into PR-gene expression and enhanced resistance requires the regulatory protein NPR1 (Cao et al. 1994). Mutant npr1 plants accumulate normal levels of SA after pathogen attack, but are incapable of transducing this SA accumulation into a response leading to PR-gene expression and SAR. Moreover, treatment of npr1 with SA or its analogue INA does not lead to induction of resistance. These results indicate that NPR1 is acting downstream of SA in the SAR signal transduction pathway (Fig. 1; Cao et al. 1994). Since the discovery of the NPR1 gene, several mutant screens based on impaired SAR expression (Delaney et al. 1995), reduced SA-induced PR-gene expression (Shah et al. 1997), or enhanced disease susceptibility (Glazebrook et al. 1996) identified mutations allelic to the npr1 mutation. These
results further illustrate the importance of the NPR1 gene in SAR. The NPR1 gene encodes a protein with a BTB/POZ (for Broad-complex, Tramtrack and Bric-a-brac/Poxvirus and Zinc fingers) (Harrison and Travers 1990, DiBello et al. 1991, Koonin et al. 1991, Godt et al. 1993) and an ankyrin-repeat domain (Cao et al. 1997, Ryals et al. 1997, Aravind and Koonin 1999). Both domains have previously been shown to be important in protein-protein interactions (Bork 1993). In non-induced plants, NPR1 is present as a multimer through forming intermolecular disulfide bonds (Mou et al. 2003). During the induction of SAR, SA triggers a biphasic change in cellular redox potential that leads to reduction of the disulfide bonds. This results in conversion of NPR1 into a monomeric form. These monomers are translocated into the nucleus (Kinkema et al. 2000), where they interact with members of the TGA/OBF subclass of basic-leucine-zipper (bZIP) transcription factors. These transcription factors are involved in SA-dependent activation of PR-genes (Lebel et al. 1998, Zhang et al. 1998, Després et al. 2000, Niggeweg et al. 2000, Zhou et al. 2000, Subramaniam et al. 2001, Fan and Dong 2002, Zhang et al. 2003). A direct interaction between NPR1 and specific TGA transcription factors is required for binding of the complex to elements within the promoter of the PR-genes (Després et al. 2000, Fan and Dong 2002). Overexpression of the NPR1 gene leads to an enhanced resistance to pathogen attack (Cao et al. 1998, Friedrich et al. 2001).

2.3. Rhizobacteria-induced systemic resistance

2.3.1. SA- or stress-dependent enhancement of resistance

Plants produce exudates and lysates at their root surface, where rhizobacteria are attracted in large numbers (Lynch and Whipps 1991, Lugtenberg et al. 2001, Walker et al. 2003). Selected strains of non-pathogenic rhizobacteria are named plant growth-promoting rhizobacteria (PGPR), because they possess the capability to stimulate plant growth (Kloepper et al. 1980, Pieterse and Van Loon 1999, Bloemberg and Lugtenberg 2001, Pieterse et al. 2003). *Pseudomonas* spp. are among the most effective PGPR. Moreover, they have been shown to be responsible for the reduced activity of soil-borne pathogens in disease-suppressive soils (Raaijmakers and Weller 1998, Weller et al. 2002, Duff et al. 2003). This type of biological control can be the result of competition for nutrients, siderophore-mediated competition for iron, antibiosis or the production of lytic enzymes (Bakker et al. 1991, Van Loon and Bakker 2003). Apart from such direct antagonistic effects on soil-borne pathogens, some PGPR strains are also capable of reducing disease incidence in above-ground plant parts through plant-mediated mechanisms. Under iron-limiting conditions, certain rhizobacterial strains produce SA as an additional siderophore (Meyer et al. 1992, Visca et al. 1993). The enhanced defensive capacity elicited by *Pseudomonas fluorescens* CHAO in tobacco might be fully explained by the bacterial production of SA, which could elicit a SAR response. Treatment of tobacco roots with CHAO triggers accumulation of SA-inducible PR proteins in the leaves (Maurhofer et al. 1994). Moreover, transformation of the SA-biosynthetic gene cluster of CHAO into *Pseudomonas fluorescens* P3 improved the systemic resistance inducing-capacity of this strain (Maurhofer et al. 1998).

Another strain that has been suggested to elicit a SA-dependent enhanced defensive capacity is *Pseudomonas aeruginosa* 7NSK2. A SA-deficient mutant of this bacterium failed to induce resistance in bean and tobacco (De Meyer and Höfte 1997). Moreover, 7NSK2 was unable to induce resistance in NahG tobacco plants against TMV (De Meyer et al. 1999). A SA overproducing mutant of 7NSK2 was shown to trigger the SA-dependent SAR pathway by producing SA at the root surface (De Meyer and Höfte 1997). Recently, however, Audenaert et al. (2002) showed that the secondary siderophore pyochelin and the antibiotic pyocyanin are the determinants for the enhanced resistance induced by wild-type 7NSK2. SA is an intermediate in the formation of pyochelin and pyocyanin is toxic to root cells, thereby setting off the SAR response.

General stresses can also induce similar responses. Cartieaux et al. (2003) performed a transcriptome analysis of *Arabidopsis* roots and shoots upon colonization of the roots by *Pseudomonas thivervalensis* (strain MLG45). MLG45 induced a clear growth reduction under the conditions used (Persello-Cartieaux et al. 2001, Cartieaux et al. 2003), suggesting that systemic changes in gene expression observed were due to a more general stress response. A significant increase in defense-related transcripts was detected prior to challenge inoculation, whereas very few changes in the transcriptome of roots were apparent, suggesting that the systemic changes in gene expression observed in MLG45-induced plants are primarily related to stress-induced reduction of plant growth.

2.3.2. Bacterial-plant interactions involved in ISR

Other strains of fluorescent *Pseudomonas* spp. have been shown to trigger ISR in an SA-independent manner (Pieterse and Van Loon 1999). SA-independent ISR has been shown in *Arabidopsis* (Van Wees et al. 1997, Lavicoli et al. 2003, Ryu et al. 2003), cucumber (Wei et al. 1991), tobacco (Press et al. 1997, Zhang et al. 2002), radish (Leeman et al. 1995a), and tomato (Yan et al. 2002). This wide range of induction of ISR indicates that the ability of these *Pseudomonas* strains to activate a SA-independent pathway controlling systemic resistance is common to a broad range of plants. ISR-inducing rhizobacteria show little specificity in their colonization of roots of different plant species (Van Loon et al. 1998). In contrast, the ability to induce ISR appears to be dependent on the bacterium/host combination. For instance, *Pseudomonas*
floriculture, ornamental and plant biotechnology volume III ©2006 global science books

al., purified lipopolysaccharide, siderophores, antibiotics, and flagella all are capable of inducing systemic resistance (Van Peer and Schippers 1992, dead bacteria are capable of inducing ISR, indicating that bacteria do not need to be metabolically active to induce ISR. Cell wall preparations, et al., and Landsberg (Bigirimana and Höfte 2002).

Bakker plant disease resistance genes (Gomez-Gomez and Boller 2000), suggesting that bacteria are recognized similar to plant pathogens. et al. mechanism for bacterial flagellins has been identified (Felix 2003). Mutants lacking flagella or the O-antigenic side chain of the lipopolysaccharide were still able to elicit ISR in Arabidopsis (Van Wees et al. 1997, Bakker et al. 2003). Apart from live WCS417r bacteria, also dead bacteria are capable of inducing ISR, indicating that bacteria do not need to be metabolically active to induce ISR. Cell wall preparations, purified lipopolysaccharide, siderophores, antibiotics, and flagella all are capable of inducing systemic resistance (Van Peer and Schippers 1992, Leeman et al. 1995b, Van Wees et al. 1997, Bakker et al. 2003, lavicoli et al. 2003). Because of the multiple inducing determinants, bacterial mutants lacking flagella or the O-antigenic side chain of the lipopolysaccharide were still able to elicit ISR in Arabidopsis (Van Wees et al. 1997, Bakker et al. 2003). So far, putative receptors for the bacterial cell wall preparations have not been isolated. However, a sensitive perception mechanism for bacterial flagellins has been identified (Felix et al. 1999). A receptor kinase was characterized that shares homology with known plant disease resistance genes (Gomez-Gomez and Boller 2000), suggesting that bacteria are recognized similar to plant pathogens.

2.3.3. Range of ISR effectiveness

The plant-growth promoting WCS417r (Pieterse and Van Loo 1999) has been shown to induce resistance in Arabidopsis against a broad range of pathogens (Van Loo et al. 1998, Bakker et al. 2002, Pieterse et al. 2003). This makes ISR phenotypically comparable to pathogen-induced SAR (Kuc 1982). Like classic pathogen-induced SAR, colonization of roots by WCS417r leads to ISR against different types of pathogens, including the fungal root pathogen F. oxysporum f.sp. raphani, the oomycetal leaf pathogen H. parasitica, and the bacterial leaf pathogens Xanthomonas campestris pv. armoraciae and Pst DC3000 (Fig. 2, Pieterse et al. 1996, Van Wees et al. 1997, Ton et al. 2002b). In contrast to SAR, treatment of Arabidopsis with WCS417r does not lead to systemic resistance against turnip crinkle virus. Conversely, ISR appears to be highly effective against the fungal pathogen A. brassicicola, whereas SAR is not (Ton et al. 2002b). The spectra of effectiveness of ISR and SAR partly overlap, but are also clearly divergent. This indicates a different mechanism of rhizobacteria-mediated ISR compared to the classic SAR response. This different mode of action was further apparent from the simultaneous activation of the ISR and SAR pathways. This results in an enhanced level of protection against Pst DC3000, compared to each treatment alone (Van Wees et al. 2000).

2.3.4. Rhizobacteria-mediated ISR: signal transduction

The differential range of effectiveness of ISR, compared to SAR, indicates the involvement of different mechanisms. Pathogen-induced SAR is accompanied by both local and systemic increases in SA levels and the expression of PR-genes (Van Loo and Van Strien 1999, Métraux 2001). Compelling evidence that rhizobacteria-mediated ISR is a SA-independent defense response came from experiments with SAR-compromised NahG plants. Upon colonization of the roots by ISR-inducing WCS417r bacteria, Arabidopsis NahG plants expressed normal

oomyc. bacteria fungi virus insect

Peronospora parasitica Pseudomonas syringeae xanthomonas campestris Fusarium oxysporum Alternaria brassicicola Botrytis cinerea Turnip crinkle virus Spodoptera exigua

Fig. 2 Effectiveness of rhizobacteria-mediated ISR (green squares) and pathogen-induced SAR (red squares) in Arabidopsis. Photographs depict symptoms in uninduced wild-type Arabidopsis plants upon infection or infestation of the pathogens and insects indicated. Squares underneath the photographs indicate that ISR and/or SAR confer a significant level of resistance. Results are based on studies by Pieterse et al. (1996 1998 2002), Van Wees et al. (1997 2000), Ton et al. (2002a 2002b) and (CMJ Pieterse, JA Van Pelt, VR Van Oosten, and S Van der Ent, unpublished results).

Floriculture, Ornamental and Plant Biotechnology Volume III ©2006 Global Science Books
levels of ISR (Pieterse et al. 1996, Van Wees et al. 1997). Furthermore, WCS417r-induced radish plants did not accumulate PR-proteins in association with their enhanced defensive capacity against fusarium wilt disease (Hofland et al. 1995). Moreover, WCS417r-induced, ISR expressing Arabidopsis plants showed enhanced resistance against Pst DC3000 and F. oxysporum f.sp. raphani, without activation of the SAR marker genes PR-1, PR-2, and PR-5 (Pieterse et al. 1996, Van Wees et al. 1997), and analysis of SA levels revealed no changes after ISR induction, neither locally nor systemically (Pieterse et al. 2000). Taken together, it was concluded that WCS417r-mediated ISR in Arabidopsis is regulated by a SA-independent signaling pathway.

Further studies revealed that treatment of the roots with WCS417r failed to trigger ISR in JA-insensitive jar1 plants or ET-insensitive etr1 plants. This indicated that the JA- and ET-response pathways are essential for the establishment of ISR (Fig. 1; Pieterse et al. 1998, Pieterse et al. 2000). Another indication for the involvement of the JA-signaling pathway came from the analysis of Arabidopsis mutant eds8, which was previously shown to exhibit enhanced susceptibility to P. syringae (Glazebrook et al. 1996). This mutant is impaired both in WCS417r-mediated ISR (Ton et al. 2002c), and JA-signaling (Ton et al. 2002b, Glazebrook et al. 2003). To further elucidate the role of ET in the ISR signaling pathway, a large set of well-characterized ET-signaling mutants was analyzed. None of these mutants showed an ISR response against Pst DC3000 after colonization of the roots by WCS417r (Knoester et al. 1999). These results confirmed that an intact ET-signaling pathway is required for the establishment of ISR. Particularly interesting was the analysis of the eir1 mutant, which is ET-insensitive in the roots, but not in the shoot. This eir1 mutant is incapable of showing ISR after root colonization by WCS417r. In contrast, after leaf infiltration with WCS417r, it did show ISR indicating that responsiveness to ET is required at the site of induction (Knoester et al. 1999). However, these results do not exclude the possibility that the ET response is also needed during the expression of ISR upon challenge inoculation.

Further evidence for the involvement of the ET-response pathway came from the identification of the Arabidopsis ISR1 locus (Ton et al. 1999). Genetic analysis of the progeny of a cross between the WCS417r-responsive ecotype Col-0 and the ISR-impaired ecotype RLD1 revealed that both the potential to express ISR and basal resistance against Pst DC3000 are monogenic, dominant traits that are genetically linked. The ISR1 locus is required for effective ISR against several different pathogens (Ton et al. 2002a). Interestingly, analysis of the ISR-impaired ecotype RLD1 revealed that it has a reduced sensitivity to ET, which co-segregates with the ISR1 locus (Ton et al. 2001). These results strongly indicate that the Arabidopsis ISR1 locus encodes a novel component in the ET-signaling transduction pathway that is important in both basal resistance and ISR in Arabidopsis.

Both at the site of application of the bacteria and systemically in the leaves, the JA content and the ET evolution remained unaltered upon ISR induction (Knoester et al. 1999, Pieterse et al. 2000). Moreover, LOX2 co-suppressed S-12 plants, which are blocked in the increase of JA after wounding (Bell et al. 2000) and pathogen infection (Pieterse et al. 2000), were normally responsive to WCS417r. Nevertheless, resistance comparable to ISR can be induced chemically by application methyl jasmonate (MeJA) or the ET precursor 1-aminocyclopropane-1-carboxylate (ACC). MeJA induction of resistance was blocked in the jar1 and etr1 mutants. In contrast, the ACC-induced expression of resistance was blocked in etr1, but not in jar1. Therefore, it was postulated that WCS417r-mediated ISR is regulated by a signaling pathway with the requirement for JA-signaling preceding the ET-signaling response (Fig. 1; Pieterse et al. 1998).

To determine whether ISR is associated with increased JA- or ET-responsive gene expression, the expression of a large set of well-known JA- and ET-responsive genes (e.g. VSP2, PDF1.2, LOX1, LOX2, HEL, CHI-B, and PAL) was analyzed in WCS417r-induced Arabidopsis plants. None of these genes tested showed an up-regulation, neither locally in the roots, nor systemically in the leaves (Van Wees et al. 1999). These results indicate that the enhanced defensive state during WCS417r-mediated ISR is not associated with enhanced JA- or ET-dependent gene expression. Because ISR is not associated with enhanced levels of the hormone signals JA or ET (Pieterse et al. 2000), but nevertheless requires responsiveness to JA and ET (Pieterse et al. 1998), it was suggested that ISR is based on an enhanced sensitivity to these hormones, rather then on an increase in their production (Fig. 1).

2.4. Dual role for NPR1 in SAR and ISR

To investigate the possible involvement of the SAR regulatory protein NPR1 in ISR signaling, the Arabidopsis npr1 mutant was tested in the ISR bioassay. Surprisingly, the npr1 mutant was incapable of showing WCS417r-mediated ISR (Pieterse et al. 1998). This result clearly showed that WCS417r-mediated ISR, like SA-dependent SAR, is an NPR1-dependent defense response (Fig. 1). Further analysis of the ISR signal-transduction pathway revealed that NPR1 acts downstream of the JA- and ET-response pathways (Pieterse et al. 1998). Because SAR is associated with NPR1-dependent PR-gene expression, and ISR is not, this demonstrates that NPR1 must differentially regulate gene expression, depending on the signaling pathway that is activated upstream of it. NPR1 seems not to be a limiting factor since simultaneous activation of ISR and SAR leads to an enhanced defensive activity compared to that observed with either type of induced resistance alone (Van Wees et al. 2000). These results suggest that the NPR1 protein is important in regulating and intertwining different hormone-dependent defense pathways.

Apart from its role in SA-dependent gene expression, NPR1 was also shown to be involved in the negative regulation of the JA-response by SA (Spoel et al. 2003). Whereas nuclear localization of NPR1 is needed for SA-induced PR-1 gene expression (Kinkema et al. 2000), the SA-induced, NPR1-mediated negative effect on JA-responsive gene expression is exerted through an as yet uncharacterized function in the cytosol (Spoel et al. 2003). These results indicate that NPR1 can have different functions at different locations in the cells.

3. GENE EXPRESSION ANALYSIS

3.1. Transcriptome analysis of SAR

All the different large-scale analyses of the transcriptome of Arabidopsis show that plants react with major changes to different pathogens, like Psm ES4326 and A. brassicicola, and stimuli, like JA, the ET precursor ACC, and SA (Schenk et al. 2000, Cheong et al. 2002, Glazebrook et al. 2003, Katagiri and Glazebrook 2003, Schenk et al. 2003, Tao et al. 2003, Van Wees et al. 2003, De Vos et al. 2005). Northern blot analysis confirmed a limited set of SAR marker genes (Ward et al. 1991, Ryals et al. 1996). Using a small set of Arabidopsis enhanced sequenced tags (ESTs), Schena et al. (1995) made the DNA microarray technology accessible for plant research, making it possible to examine the expression of a large group of genes simultaneously. Since then, and aided by the full sequencing of the Arabidopsis genome (Kaul et al. 2000), many
microarray service centers have been established, which now provide a range of different small microarrays up to complete genome arrays (Reymond 2001, Zhu 2003). Using a DNA microarray representing about 25% of all Arabidopsis genes, Maleck et al. (2000) monitored gene expression after treatment of wild type and different SAR-impaired mutants with several different SAR inducers. About 300 (4.3%) out of the 7,000 genes were shown to be involved in the SAR response. These results indicate that expression of SAR leads to a much larger transcriptional reprogramming than just the changes in PR-gene expression observed by conventional methods. Moreover, Maleck and co-workers (2000) provided evidence for a common promoter element in a set of coordinately regulated genes, including PR-1. In addition, they showed that subtle differences in gene expression patterns occur under different SAR-inducing and repressing conditions, indicating that although every treatment leads to SAR, induction is accompanied by additional treatment-specific gene expression. Moreover, gene expression during the SAR response was found to partly overlap with responses observed during a compatible interaction. This paradox is thought to be explained by the fact that during a compatible interaction, host defense responses are turned on, but too slowly or too late to be effective. These results support the idea that acquired resistance is an enhancement of basal resistance, and involves the same resistance mechanisms (Van Loon 2000).

3.2. Transcriptome analysis of ISR

To identify ISR-related genes, Léon-Kloosterziel et al. (2005) screened a large number of gene trap and enhancer trap lines of Arabidopsis for WCS417r-induced gene expression. This resulted in the isolation of an enhancer trap line with WCS417r-induced GUS expression in the roots. Further study revealed that this induction occurs upon colonization of the roots by different non-pathogenic Pseudomonas spp. strains, but not after colonization by Escherichia coli. Moreover, GUS expression was also observed after treatment with ACC, but not with JA or SA. Analysis of the flanking sequences revealed that the GUS gene was activated in cis by the thrautamin-like gene AtTLP1, which encodes a pathogenesis-related protein of the PR-5 family. However, analysis of an AtTLP1 knockout mutant indicated that WCS417r-induced expression of this gene is not required for the expression of ISR against Pst DC3000. Moreover, overexpression of the AtTLP1 gene did not result in a constitutive or enhanced ISR response. These results indicate that AtTLP1 gene expression is a common response of Arabidopsis roots to non-pathogenic Pseudomonas bacteria, but it is unlikely that the AtTLP1 protein contributes to the enhanced defensive capacity observed in ISR-expressing plants.

Verhagen et al. (2004) analyzed the transcriptome of Arabidopsis during WCS417r-mediated ISR induction and expression using Affymetrix GeneChips containing about one third of the genes present in the Arabidopsis genome. Colonization of the roots by WCS417r resulted in changes in expression of a large group of genes locally in the roots. Part of these changes was transient and only visible at a single time point, whereas 97 genes showed consistent changes in time. This group is thought to be involved in the local onset of ISR. Systemically in ISR expressing leaves, prior to pathogen challenge, none of the ~8,000 genes tested showed consistent changes in expression. These observations indicate that the state of ISR, in contrast to SAR, is not associated with detectable changes in gene expression. Gene expression patterns were also determined after challenge inoculation with Pst DC3000. In non-induced, infected control plants, a large set of genes showed changes in expression after pathogen challenge. Part of this set is thought to be important for basal resistance against Pst DC3000. Also in ISR-expressing plants, a large group of genes showed altered expression levels. This group was slightly smaller in number, perhaps because of the enhanced resistance in ISR-expressing plants. In challenged control plants, these general Pst DC3000-responsive genes were shown to be predominantly dependent on JA/ET and SA signal transduction. A group of 81 of these – mainly JA/ET-dependent – genes showed augmented expression in ISR-expressing plants, indicating that these genes were primed to respond faster and/or more strongly upon pathogen attack.

The majority of the primed genes was predicted to be regulated by JA and/or ET signaling, which confirmed earlier findings that colonization of the roots by WCS417r primed Arabidopsis plants for augmented expression of the JA- and/or ET-responsive genes ATVSP2, PDF1.2 and HEL (Van Wees et al. 1999, Hase et al. 2003). Other ISR-inducing PGPR have also been demonstrated to enhance the plant’s defensive capacity by priming for potentiated defense-related gene expression (e.g. De Meyer et al. 1999, Ahn et al. 2002, Kim et al. 2004, Tjamos et al. 2005), indicating that this is a common feature in rhizobacteria-mediated ISR. These results demonstrate that WCS417r-mediated ISR is associated with potentiation of gene expression. Priming of pathogen-induced genes allows the plant to react more effectively to the invader encountered, which might explain the broad-spectrum action of rhizobacteria-mediated ISR.

3.3. Priming in other beneficial plant-microbe interactions

Besides pathogenic interactions, mutually beneficial relationships are frequent in nature, improving plant nutrition and/or helping the plant to overcome biotic or abiotic stresses. These associations can involve fungi, such as mycorrhizal and plant growth-promoting fungi (PGPF), or bacteria, such as the nitrogen-fixating Rhizobium spp., or plant growth-promoting rhizobacteria (PGPR)(Van Loon et al. 1998, Kloepper et al. 2004, Bent 2005, Harrison 2005). The establishment of mutualistic associations involves mutual recognition and a high degree of coordination that is based on a continuous cellular and molecular dialogue between the plant and the micro-organism. In many cases, recognition of a beneficial micro-organism by the plant induces an enhanced defensive capacity in the plant that effectively protects the plant against a broad spectrum of plant pathogens (Pozo et al. 2005, and references therein). For instance, colonization of tomato roots by the mycorrhizal fungus Glomus mosseae systemically protects the plant against infection by Phytophthora parasitica (Cordier et al. 1998, Pozo et al. 2002). In general, systemic resistance induced by beneficial micro-organisms is not associated with major changes in defense-related gene expression (Pierette et al. 2002), probably because this would entail heavy investments in host resources and reduced fitness (Heil 2002), which would undermine the mutual benefits of the interaction.

A common feature of resistance induced by beneficial micro-organisms is priming. For instance, colonization of tomato roots by mycorrhizal fungi systemically protects the plant against H. parasitica infection, but it does not directly induce systemic accumulation of PR proteins. However, upon pathogen attack, mycorrhizal plants accumulate significantly more PR-1a and basic β-1,3 glucanase protein than non-mycorrhizal plants. Ultrastructural studies revealed that mycorrhizal plants deposited host cell wall thickenings containing non-sterified pectins and callose around the sites of pathogen infection, whereas non-mycorrhizal plants did not (Cordier et al. 1998, Pozo et al. 1999, Pozo et al. 2002). Similarly, PGPF, such as Trichoderma spp., have been shown to induce a primed state in plants. In cucumber, subsequent challenge inoculation of Trichoderma asperellum T203-preinoculated plants with the leaf pathogen Pseudomonas syringae pv. lachrymans resulted in potentiated PR gene expression.
relative to non-induced, challenged plants (Shoresh et al. 2005). In barley, pre-inoculation of the roots with the PGPF P. syringae pv. tomato DC3000 induced systemic resistance (ISR) mediated by the plant growth-promoting rhizobacteria Pseudomonas putida WCS417r (De Boer et al. 2003). This indicates that the JA/ET-dependent ISR pathway and the SA-dependent SAR pathway act independently and additive at the level of protection against this particular pathogen. Moreover, our findings that the combination of ISR and SAR confers differential protection against different types of pathogens (Ton et al. 2002b). Therefore, we provided evidence that ISR and SAR confer differential protection against different types of pathogens (Ton et al. 2002b). Thus, combining both types of induced resistance can protect the plant against a complementary spectrum of pathogens, and can even result in an additive level of induced protection against pathogens that are resistent through both the JA/ET- and the SA-dependent pathways.

Biological control of plant diseases is still in its infancy, because the level of protection and its consistency are generally not sufficient to compete with conventional methods of disease control. One approach to improve the efficacy and consistency of biological control against soil-borne pathogens is to apply combinations of antagonistic micro-organisms with different mechanisms of action (De Boer et al. 1999, Bakker et al. 2003). In addition, our findings that the combination of ISR and SAR confers protection against a complementary spectrum of pathogens and results in enhanced levels of protection against specific bacterial pathogens (Van Wees et al. 2000), offers great potential for integrating both forms of induced resistance in future agricultural practices.

ACKNOWLEDGEMENTS

C.M.J.P. received funding from the Centre for BioSystems Genomics, which is part of the Netherlands Genomics Initiative and the Netherlands Organisation for Scientific Research (NWO grant 865.04.002).

REFERENCES

Awrejcewicz R, Koonin EV (1996) Fold prediction and evolutionary analysis of the PDZ domain: Structural and evolutionary relationship with the potassium channel tetramerization domain. Journal of Molecular Biology 265, 133x-135

Lynch WM, Whipps JM (1999) Involvement of jasmonic acid/ethylene signaling pathway in the systemic resistance induced in cucumber by Shroeff M, Yedidia I, Chet I
Rajamakers KM, Weisbeek PJ, Van Loon LC, Pieterse CMJ, Ton J (1998) Natural plant protection by 2,4-diacetylphloroglucinol-producing Pseudomonas spp. in take-all decline soils. Molecular Plant-Microbe Interactions 11, 144-152
Rui T, Tsu, Klessig DF (1997) Characterization of a salicylic acid-insensitive mutant (sa1) of Arabidopsis thaliana, identified in a screen utilizing the SA-inducible promoter. Molecular Plant-Microbe Interactions 10, 69-78
Shresta M M, Yedidia I, Chet I (2005) Involvement of jasmonic acid/ethylene signaling pathway in the systemic resistance induced in cucumber by Trichoderma asperellum T203. Phytopathology 95, 76-84
Siegrist J, Mühlenbeck S, Buchenauer H (1998) Cultured parsley cells, a model system for the rapid testing of abiotic and natural substances as inducers of systemic acquired resistance. Physiological and Molecular Plant Pathology 53, 223-238
Shresta M M, Yedidia I, Chet I (2005) Involvement of jasmonic acid/ethylene signalling pathway in the systemic resistance induced in cucumber by Trichoderma asperellum T203. Phytopathology 95, 76-84
Tao Y, Xie ZY, Chen WQ, Glazebrook J, Chang HS, Han B, Zhu T, Zou GZ, Katagiri F (2000) Quantitative nature of Arabidopsis responses during compatible and incompatible
interactions with the bacterial pathogen Pseudomonas syringae. The Plant Cell 15, 317-330
Ton J, Pieterse CMJ, Van Loon LC (1999) Identification of a locus in Arabidopsis controlling both the expression of rhizobacteria-mediated induced systemic resistance (ISR) and basal resistance against Pseudomonas syringae pv. tomato. Molecular-Plant-Microbe Interactions 12, 911-918
Van Peer R, Niemann GJ, Schippers B (1991) Induced resistance and phytoalexin accumulation in biological control of fusarium wilt of carnation by Pseudomonas sp. strain WCS417r. Phytopathology 81, 726-734
Van Wees SCM, Luijendijk M, Smorenburg I, Van Loon LC, Pieterse CMJ (1999) Rhizobacteria-mediated induced systemic resistance (ISR) in Arabidopsis is not associated with a direct effect on expression of defense-related genes but stimulates the expression of the jasmonate-inducible gene AtCo. Plant Molecular Biology 41, 537-549
Willits MG, Ryals JA (1996) Determining the relationship between salicylic acid levels and systemic acquired resistance induction in tobacco. Molecular-Plant-Microbe Interactions 11, 795-806

Floriculture, Ornamental and Plant Biotechnology Volume III ©2006 Global Science Books

Induced defense signaling